3D科学谷 » 3DScienceValley //www.mountainsine.com 三维科学, 无限可能! Mon, 06 Jan 2025 01:31:56 +0000 zh-CN hourly 1 https://wordpress.org/?v=3.9.40 长安大学 l 粉末床熔融式增材制造钛合金研究进展及应用 |《中国有色金属学报》 //www.mountainsine.com/?p=38482 //www.mountainsine.com/?p=38482#comments Mon, 06 Jan 2025 01:31:56 +0000 //www.mountainsine.com/?p=38482 谷专栏

 

3D科学谷洞察

钛合金增材制造技术在航空航天、医疗、汽车等行业的应用将进一步扩大。特别是在航空航天领域,钛合金构件能够满足复杂需求,缩短研发周期,在医疗器械领域,如人工关节等的应用也在不断增加。

钛合金的增材制造技术处在快速发展中,例如,研究人员发现,在激光增材制造过程中,由于高温和快速凝固作用,以及熔池内的Marangoni流动,可以在金属基体中生成分布均匀的REO颗粒,有助于提高材料的整体性能,通过控制位错的密度和分布,可以优化钛合金的力学性能。

随着对钛合金增材制造的深度研究,钛合金增材制造技术正朝着生产复杂化、高精度化、大型化以及低成本的方向发展,实现生产的快速化,促进制造业的快速发展。”

valley 钛合金 飞机

block 引用格式

毛雅梅, 赵秦阳, 耿纪华, 刘燮, 陈永楠, 张凤英, 徐义库, 宋绪丁, 赵永庆. 粉末床熔融式增材制造钛合金研究进展及应用[J]. 中国有色金属学报, 2024, 34(09): 2831-2856.

block 研究背景

钛及其合金的粉末床熔融式(PBF)增材制造技术因具有定制制造、成本节约和时间优化等优势,在航空以及生物医学领域备受关注。但在PBF制造钛合金时,多种因素如热导率低、热积累、氧化敏感性及快速冷却引起的热应力共同导致成形件缺陷、组织差异、性能不稳定与质量参差不齐等问题。因此,本文通过分析PBF技术中的激光粉末床熔融(Laser powder bed fusion, L-PBF)和电子束粉末床熔融(Electron beam powder bed fusion, EB-PBF)技术原理,讨论了PBF增材制造钛合金微观组织特征、力学性能、耐腐蚀性能、耐磨损性能与生物相容性的特点;同时,聚焦成形过程中的缺陷形成机理及影响因素,提出缺陷消除方案,展望两种技术的未来发展方向,为促进创新钛合金增材制造提供新的研究思路。

block 文章亮点

(1)详细阐述了L – PBF和EB – PBF技术制造不同类型钛合金(α、β、α+β)微观组织的差异,明确了微观组织对钛合金在力学性能、耐腐蚀性能、耐磨损性能和生物相容性等方面的影响。
(2)类比了PBF技术制造钛合金的缺陷并提出优化方案,将PBF增材制造钛合金过程中的缺陷大致分为融合不良、几何结构缺陷、成分缺陷三类。可通过控制粉层厚度、提高粉层均匀性、预处理、优化光学系统参数、人工智能以及数值模拟相结合等方法提高钛合金成形件的质量。
(3)通过L-PBF和EB-PBF技术在航空航天和生物医学领域制造钛合金的应用实例,基于增材原料、工艺、设备、应用四个方面,对粉末床熔融式(PBF)增材制造钛合金未来可能的发展方向进行了展望。

block 图文解析

增材制造技术因具备高质量制造结构复杂的高性能金属零部件的能力而在工业生产和高性能机械系统方面占据中心地位。根据材料进给方式不同,增材制造可分为粉末床熔融式(Powder bed fusion, PBF)和直接能量沉积式(Direct energy deposition, DED),两种技术原理示意图如图1所示。PBF技术中铺粉在激光或电子束作用前已完成;而DED技术中,粉末随激光或电子束作用被同时送给。

L-PBF_1图1 增材制造技术原理示意图

图2为L-PBF过程中激光与粉末床相互作用的示意图以及物理现象,L-PBF过程与激光焊接类似,在L-PBF过程中,激光束与粉末材料相互作用,粉末被高温熔化又快速凝固,层层堆叠,形成金属部件,该过程中粉末的热对流、热传导、热辐射以及熔池内部的热量转移过程更加复杂。该技术的主要优势是激光热源所适用的材料范围广、能量密度高和成形精度高等。

L-PBF_2图2 L-PBF技术(a)示意图;(b)物理现象

图3为EB-PBF技术中电子束与粉末床的相互作用及物理场变化示意图,控制系统将合金粉末按照一定的厚度均匀地平铺在基板上,并以电流通过钨丝形成的电子束作为热源,在聚焦线圈和电磁偏转线圈的作用下,对基板上的合金粉末进行扫描熔化;在成形过程中存在相变、润湿、蒸发等现象;电子束每扫描熔化一层,工作台就下降一层的高度,然后重新铺粉,电子束重复扫描熔化加工,各加工层相互凝结成为整体。整个制造过程是在真空环境下进行的,因而有效地避免了钛合金在加工过程中被氧化的可能性。

L-PBF_3图3 EB-PBF技术(a)示意图;(b)物理现象

在增材制造过程中,使用不同的热源(如EB-PBF的电子束与L-PBF的激光)对不同种类的钛合金(如TC11与TC4)进行成形,会导致显著不同的微观组织特征。钛合金微观组织差异主要指α和β两相晶粒的尺寸与含量,通常晶粒尺寸主要受生长时间(即凝固速率)的影响。由于热源特性、能量分布与扫描策略的差异,L-PBF成形的α和β钛合金具有较小的晶粒尺寸和随机的晶体取向,通常具有较高的α和β相含量以及较高的残余应力,宏观形貌中常存在较多的表面缺陷和孔洞,EB-PBF成形的α和β钛合金则具有相反的特点。

L-PBF成形α钛合金微观组织可分为3类,即针状马氏体α′组织、针状马氏体α′+岛状αₘ混合组织与岛状αₘ组织,如图4(a)~(c)所示。与L-PBF钛合金不同,EB-PBF成形的α钛合金组织主要为条状、针状和块状α相。各组织特征存在差异,EB-PBF制备的α钛合金组织以α大晶团与小晶团层状交替排列为主,如图4(d)所示;大晶团内片层定向生长,大晶团片层的下方存在一个由较小的γ等轴晶团组成的过渡区,如图4(e)所示;此外,还可能存在由于逐层堆积过程的导热作用所致γ等轴晶和少量α₂/γ双相态形成的层状组织,如图4(f)和(g)所示;L-PBF成形的β钛合金微观组织由柱状β-Ti基体包围着薄壳状组织组成,如图5(i)所示。

L-PBF_4图4 典型α-钛合金的显微组织特征:(a-c) L-PBF成形的TA7合金显微组织;(d, e) EB-PBF成形的Ti-48Al-2Cr-2Nb合金显微组织:(f, g) L-PBF成形的Ti-34.2Nb-6.8Zr-4.9Ta-2.3Si合金显微组织:(h, i) L-PBF成形的β钛合金微观组织

由增材制造钛合金常通过调节工艺参数调控组织实现力学性能的改善。如调节激光功率,制备出力学性能各向同性的弱织构CP-Ti(激光功率高)和力学性能各向异性的强织构CP-Ti(激光功率低),合金垂直于成形方向的屈服强度(832±24 MPa)低于平行于成形方向的屈服强度(1049±40 MPa),如图5(a)和(b)所示;垂直方向韧性断裂的小韧窝断口形貌如图5(c)所示;此外,如图5(d)所示,水平方向断口组织中存在未熔区域,使得应变失效更早发生。如图5(e)所示,通过控制L-PBF过程中的氧含量,制备了CP-Ti,当氧含量为0.17 wt.%时,其断裂抗拉强度可达731.5±5.7 MPa,断口形貌中的韧窝表明合金以韧性断裂为主,并且相比于与其他方法,调节氧含量可使CP-Ti拥有更好的塑性,如图5(f)所示。

L-PBF_5图5 EB-PBF在不同方向上形成的CP-Ti合金应力-应变曲线:(a, c)垂直;(b, d)横向;(e, f) L-PBF成形的CP-Ti合金力学性能和显微组织:(e)垂直于沉积方向的工程拉伸应力-应变曲线(插入断口);(f)本研究与其他研究的断裂拉伸性能比较。

图6为粉末床熔融式增材制造过程中激光与粉末的交互作用以及产生缺陷的多尺度、多物理场现象的示意图。激光对钛合金粉末的作用是一个复杂的过程,宏观上表现为粉末在激光作用下的热效应,而微观上表现为激光在钛合金粉末上的能量交换过程。PBF增材制造钛合金过程中的缺陷分别发生在铺粉和打印过程中,飞溅、球化、气孔等缺陷主要在打印过程中形成,最终保留在成形件中,降低了其性能。

L-PBF_6

block 研究结论

(1)本文以粉末床熔融式(PBF)增材制造钛合金研究现状为背景,简要分析了PBF技术中两种方法(L-PBF和EB-PBF)的原理和特点,概述了L-PBF和EB-PBF成形过程中产生的缺陷,以及缺陷的形成机理与解决方法,讨论了两种技术成形的钛合金(α、β、α+β)的组织特征与性能关系,简要列举了部分增材制造钛合金的应用现状,展望了粉末床熔融式(PBF)增材制造钛合金未来可能的发展方向,得出以下观点。

(2)增材制造的非平衡快速凝固特点会导致钛合金成形件性能无法实现最佳,需要从工艺适用性角度发展该技术的专用合金材料,以提高性能。此外,在保证成形件性能的基础上,通过设计引入铁、氧等元素,可以实现降低成本的目标。

(3)L-PBF技术效率低,由于精度和沉积效率不可兼得,在保证高精度高柔性的同时往往需要牺牲效率,因此需要深度优化工艺,提高效率,降低残余应力,增强稳定性,提高尺寸精度;减少支撑、或者无支撑的设计,提高柔性。

(4)由于增材制造过程中高冷却速率造成的缺陷无法有效避免。因此,未来增材设备应考虑添加与快冷相匹配的均匀散热模块,在制造过程中更为有效地减少甚至杜绝缺陷的产生。应结合数值模拟,降低缺陷存在率,降低研发成本。

block 团队介绍

zhao

赵秦阳,1993年生,博士,教授,长安大学材料学院成型系副主任,从事高性能钛合金领域研究工作。入选中国科协青年人才托举工程项目、陕西省高层次人才计划青年拔尖人才;主持国家自然科学基金、国家重点研发计划子课题、173项目子课题、陕西省科技重大专项课题等科研项目;发表第一/通讯作者论文80余篇,作为副主编出版教材3部。担任《中国有色金属学报》等期刊青年编委,主持陕西省教改重点项目1项,获陕西省高等教育科技奖一等奖1项。

chen陈永楠,教授,博士生导师,教育部首批国家万人创新创业人才导师,交通运输部青年科技英才。长期从事轻合金表面处理技术及产业化、钛合金加工变形及模拟等领域科研工作,先后获批国家自然科学基金、国家重点研发计划、陕西省重大专项等多项国家级、省部级项目,在国际影响力期刊发表论文120余篇,授权并转化国家发明专利7件。

mao

毛雅梅,博士研究生。研究方向为高强钛合金及钛合金表面处理,以第一作者在 Chemical Engineering Journal、Surface and Coatings Technology、机械工程学报、表面技术等期刊发表学术论文5篇。

来源
中国有色金属学报 l

长安大学赵秦阳教授、陈永楠教授团队:粉末床熔融式增材制造钛合金研究进展及应用 |《中国有色金属学报》重点推荐文章

l 谷专栏 l

欢迎高校及科研机构、企业科学家加入谷专栏,与业界分享对推动增材制造发展起关键作用的共性基础科研与应用成果,欢迎扫描下方图片二维码提交您的信息。

谷专栏


白皮书下载 l 加入3D科学谷QQ群:106477771
网站投稿 l 发送至2509957133@qq.com
欢迎转载 l 转载请注明来源3D科学谷

]]>
//www.mountainsine.com/?feed=rss2&p=38482 0
为大尺寸、大壁厚圆环/筒类复杂结构件开辟新途径! 南航利用搅拌摩擦沉积增材制造技术制造出1m级高强铝合金圆环样件 //www.mountainsine.com/?p=38334 //www.mountainsine.com/?p=38334#comments Fri, 03 Jan 2025 13:10:28 +0000 //www.mountainsine.com/?p=38334 根据3D科学谷的技术观察,搅拌摩擦增材制造技术(FSAM)无需粉末床、沉积腔或真空室,在空气中即可生产,设备类似于数控加工中心,可按需进行扩展从而制造更大型部件,FSAM技术是一种固相非熔化增材制造方法,能够在材料的熔点以下进行,避免了熔化和凝固过程中产生的气孔和裂纹等缺陷,FSAM技术具有低能耗、大尺寸、快速成形的特点,在效率、环保性、材料利用率、力学性能以及适用材料范围等方面相比其他增材制造技术显示出独特的优势。

3D科学谷洞察

搅拌摩擦增材制造技术的研究进展表明,该技术在轻质大型结构件增材制造、特征结构添加、梯度材料与涂层制备、缺陷损伤修复及新型复合材料制备等方面具备较大的应用潜力。”

valley_航空技术分类

block 大尺寸、大壁厚

南航柔性成形技术与装备研究团队利用搅拌摩擦沉积增材制造技术,成功制造出1m级高强铝合金圆环样件,在大型构件整体增材制造的工艺稳定性、精度控制及应力变形调控等方面实现技术突破,为大尺寸、大壁厚圆环/筒类复杂结构件加工制造开辟了新途径。

nanhang_1 nanhang_2nanhang_3

搅拌摩擦沉积增材技术是一种基于摩擦产热的新型固态增材制造工艺,利用旋转工具与金属材料的摩擦热,使材料达到塑性状态并实现逐层沉积,最终形成三维实体零件,通过精确控制工艺参数,可以实现高质量、高效率的增材制造。该技术具有增材组织致密、热影响区小、残余应力低等优点,在航空航天、汽车制造等领域展现出广阔的应用前景。

block 团队简介:

南京航空航天大学柔性成形技术及装备研究团队始终坚持“立足空天、服务国防”的科研理念,以高质量党建引领高质量发展,以服务国家和国防重大需求为牵引,系统开展柔性成形基础理论、关键技术攻关、数字化柔性精确成形装备研发与航空航天重大工程应用等工作。目前,团队具有国家级高层次人才、国家级青年人才、重大基础研究项目首席科学家、中国科协青年托举、博新计划等教师8名、博士研究生20余名、硕士研究生60余名。

团队承担某国家级人才项目、国家重大基础研究项目、国家重大转化项目、国家科技重大专项(07)、国家重点研发计划重点专项、领域基金重点项目、国家级青年人才项目、国家自然科学基金项目(重点、面上、青年、国合)以及江苏省重点研发计划重点项目、国际合作项目等30余项,千万级项目4项;另外承担国防军工型号预研、民口科技成果转化关键技术和工艺研发等企业横向项目等20余项。团队获授权专利110余件,出版中英文学术专著6部,发表学术论文240余篇【Nature Communications (IF=16.6),Progress in Materials Science(IF=37.4),International Journal of Machine Tools & Manufacture(IF=14)】,牵头制定国家标准4项;荣获江苏省科学技术一等奖、军事科技进步二等奖、国防技术发明二等奖、教育部科技进步二等奖、日内瓦国际发明展特别金奖(大会最高奖)等省部级奖8项

来源
NUAA柔性成形技术与装备研究团队l

南航柔性成形技术与装备研究团队利用搅拌摩擦沉积增材制造技术成功制造出1m级高强铝合金圆环样件

frontier-s

 

知之既深,行之则远。基于全球范围内精湛的制造业专家智囊网络,3D科学谷为业界提供全球视角的增材与智能制造深度观察。有关增材制造领域的更多分析,请关注3D科学谷发布的白皮书系列。


白皮书下载 l 加入3D科学谷QQ群:106477771
网站投稿 l 发送至2509957133@qq.com
欢迎转载 l 转载请注明来源3D科学谷 l 链接到3D科学谷网站原文

]]>
//www.mountainsine.com/?feed=rss2&p=38334 0
华中科技大学 l 用于电机3D打印,科学家提出增材制造原位物相调控新策略,材料饱和磁感应强度达到2.05T //www.mountainsine.com/?p=38333 //www.mountainsine.com/?p=38333#comments Thu, 02 Jan 2025 03:15:46 +0000 //www.mountainsine.com/?p=38333

3D科学谷洞察

根据3D科学谷的市场研究,未来的驱动任务-无论是在工业领域还是交通领域-都对各个组件提出了很高的要求。基于传统的制造工艺,优化的几何形状通常是不可能的,结果是设计者在性能和效率上痛苦折衷,某种意义上电动机的经典制造工艺达到了极限。而另一方面,随着增材制造 (AM) 技术日趋成熟,增材制造为电机的制造开辟了另外一条曲径通幽之路:3D打印-增材制造电机(EM)只是时间问题。

valley 电机

预测在未来几年内原型领域的电机组件3D打印将急剧增加,最有可能集中在3D打印机器绕组、热交换器和同步转子上。此外,提升电机效率的一个关键在于其内部定子和转子所用的软磁合金材料,增材制造高性能软磁合金对高频电机铁芯的制造和应用具有重要的工程意义。”

DeepTech深科技报道了华中科技大学非晶态材料实验室在电机领域的突破:

在现代工业生产和社会生活中,电机被广泛应用于电动汽车、高铁、精密机床等多个关键领域,其所消耗的电能占全国总用电量的 40%。

电机所消耗的电能除了转化为机械能发挥作用外,剩余部分全部转化为热能浪费掉,其中机械能相较于电机总耗电量的占比就是电机的效率。

研究表明,如果电机的效率可以提升 1%,那么每年中国就能节省 500 亿度电。想要提升电机的效率,其内部定子和转子所用的软磁合金材料是关键。

目前普遍使用的软磁材料是硅钢,其矫顽力高和电阻率低的固有属性,制约了降低电机损耗的进一步降低。

近些年来新兴的多组元合金,比如高熵合金、中熵合金和非晶合金,得益于其广阔的成分空间,可以在很大范围内进行微观组织和性能的调控,有望获得性能更为优异的软磁材料。

“ 3D Science Valley 白皮书 图文解析

valley_高熵

然而,软磁多组元合金的成形性通常较差,通过传统的加工方式难以制备复杂构件。

激光增材制造是一种以激光为热源,逐层熔化粉末从而成形零件的新技术,可以加工任意复杂形状的零件。目前,已有不少增材制造软磁多组元合金的工作报道。

但是,增材制造过程中复杂的热历史会导致软磁多组元合金形成复杂的微观组织结构,这导致最终得到样品的软磁性能(如矫顽力过大)无法满足实际需求。

为了解决这个问题,华中科技大学非晶态材料实验室的柳林教授、张诚教授团队瞄准目前高频电机亟需解决的节能问题开展研究。

软磁非晶合金由于其独特的原子排布结构特征具有一系列优异的软磁性能,比如:高磁导率、高电阻率、低矫顽力和低损耗等优点。

然而,由于铁基非晶合金具有硬度高、脆性大的特点,使得传统加工方式难以对其进行加工成形。

于是,他们利用紫外皮秒脉冲激光切割软磁非晶条带并进行叠片制备出非晶定子样件,实现了低损耗非晶定子的快速无损加工。

Scripta(来源:Scripta Materialia)

然而该技术无法用于复杂异形结构铁芯的制备,制约了其进一步的发展。为了突破异形结构铁芯的成形难题,他们同步开展第二个方向研究工作——增材制造多组元软磁合金。

期间,他们进行了大量的软磁无序合金成分设计工作,采用铸造法制备得到了一批具有优异软磁性能的合金体系,随后采用增材制造技术对这些体系进行加工成形。

由于增材制造过程中极快速升降温的效应会导致样品中非平衡相的形成,使得最终制得样品的性能相较于铸态样品发生恶化。

如何在激光这种高能热源导致的极端环境中得到对软磁性能有益的物相结构,是他们遇到的一个瓶颈问题。

为了解决这一问题,他们结合以往工作中粉末表面改性的经验对本工作中所使用的粉末进行表面改性,并对增材制造工艺进行了大量优化,对不同粉末改性和增材制造工艺下得到的微观组织结构的演变规律和磁学性能进行探索。

经过不懈的努力,最终他们寻找到了 FeCoNi 和 Fe2O3 这一组合及其对应的最优工艺参数。

除此之外,他们还采用增材制造技术对软磁非晶合金进行成形,即在增材制造软磁多组元合金中引入原位物相调控的策略来调控微观结构,从而获得了优异的软磁性能。

该策略基于纳米氧化物表面改性的元素粉末,在激光增材制造过程中原位调控物相结构(体心立方结构(BCC,body-centered cubic)/面心立方晶格(FCC,face centered cubic)双相变 FCC 单相),实现软磁性能的优化,从而有效解决当前增材制造软磁多组元合金在性能上的不足。

具体来说,他们首先选择了一种非等摩尔比的 FeCoNi 中熵合金作为基础合金,该合金体系具有高饱和磁感应强度的优点,但其双相结构的特点导致其矫顽力较高。

于是,他们采用原位物相调控的策略对其相结构和磁学性能进行了优化。

这一过程包含三个步骤:

首先,通过湿化学法在单质元素粉末表面均匀包覆一层纳米 Fe2O3 颗粒;

随后,采用激光增材制造技术将预处理后的粉末加工成形成样品,在该过程中 BCC/FCC 双相结构转变为 FCC 单相结构,纳米 Fe2O3 颗粒转变为 FeO 颗粒;

最后,通过高温热处理进一步优化组织结构及磁学性能。

经过上述步骤,他们得到了单一 FCC 结构的 FeCoNi 中熵合金/FeO 复合材料,该材料的饱和磁感应强度达到 2.05T,矫顽力低至 115A/m,这些性能优于大多数增材制造软磁合金。

另外,FeO 颗粒将电阻率提高至未添加纳米颗粒样品的两倍,从而有效降低铁损。

总的来说,本研究中提出的创新策略为增材制造高性能软磁合金提供了新的思路,也对高频电机铁芯的制造和应用具有重要的工程意义

这一成果潜在的应用场景主要是电机,尤其是高频电机中的铁芯。如前所述,电机效率任何微小的提升都可以节约大量的能源。

“ 3D Science Valley 白皮书 图文解析

valley_电机组成

为了做到这一点,电机中所采用软磁材料需要同时具有低矫顽力和高电阻率的性能特点。而且随着技术的发展,电机内部的结构也越来越复杂,传统加工技术在成形这些复杂形状时显得力不从心。

而本次工作可以同时解决上述两个问题:

首先增材制造技术可以解决样件复杂度的问题;其次采用原位物相调控策略制备的多组元无序合金展现出优异的软磁性能,从而满足电机对软磁材料性能的要求。

然而由于软磁非晶合金的玻璃形成能力通常较低,导致在激光 3D 打印过程中形成了许多脆性硬磁晶化相,这些相会增大了矫顽力。因此后续他们将继续探索增材制造成形软磁非晶合金的新方法,致力于解决当前面临的技术难题。

来源
DeepTech深科技 l

科学家提出增材制造原位物相调控新策略,材料饱和磁感应强度达到2.05T

frontier-s

知之既深,行之则远。基于全球范围内精湛的制造业专家智囊网络,3D科学谷为业界提供全球视角的增材与智能制造深度观察。有关增材制造领域的更多分析,请关注3D科学谷发布的白皮书系列。


白皮书下载 l 加入3D科学谷QQ群:106477771
网站投稿 l 发送至2509957133@qq.com
欢迎转载 l 转载请注明来源3D科学谷 l 链接到3D科学谷网站原文v

]]>
//www.mountainsine.com/?feed=rss2&p=38333 0
2025中国增材制造,开启伟大变化! //www.mountainsine.com/?p=38332 //www.mountainsine.com/?p=38332#comments Tue, 31 Dec 2024 07:59:06 +0000 //www.mountainsine.com/?p=38332 尊敬的3D科学谷谷友,大家好,又是一年年末来临,从2014年初创立,3D科学谷即将走过11年光景,感恩海内外谷友这11年来的殷殷相伴,期待来年共同见证中国增材制造领域的新气象。

kitty 2025

新的一年即将开启的时刻,按照3D科学谷的惯例,借此机会与谷友们畅谈这一年的所观所得。

block 现状

根据中商产业研究院,中国在2023年的3D打印市场的规模将达到367亿元人民币,在2024年,将增加到415亿元人民币。

3D科学谷认为,随着技术的持续发展和成本逐渐下降,3D打印在航空航天和医疗设备等领域(例如高准确性和高复杂性要求)进行了产业化,助力传统制造进行产业升级。新兴的人形机器人以及低空经济区(例如无人机)正在采用3D打印技术作为关键组件开发的核心技术。

block 展望

中国增材制造业的规模将继续增长,中国将基于创新能力和降低成本的能力以及从应用市场的采用率提高的能力来领导增材制造业的发展。从追赶到自主创新,中国将诞生最好的创新,这里面包括学院方面出现的,和企业的研发中心出现的创新。抱着向全世界开放的决心,中国将在世界范围承担积极的推动增材制造行业发展的角色,为AM增材制造行业铺平道路,以实现更可持续的制造以及更绿色的环境。

国际合作与竞争力:基于双赢的出发点,中国的增材制造行业发展将更加开放,品牌和产品有望成为领导全球行业发展的积极元素,以优化和分配全球创新资源,并集成到全球市场,实现共同发展。

工业生态系统建设:中国正在建设一个完整的增材制造产业链,涵盖材料、工艺、软件、设备等核心元素,并打造制造生态系统的良性发展,包括测量、标准、测试、认证等。

block 技术

无支撑3D打印技术:大多数中国制造商已经发布自己的无支撑/更少支撑的3D打印技术。

超级尺寸:例如,铂力特发布了新的优化BLT-S825,该设备配备了24个激光器。BLT-S825的成形尺寸为850mm×850mm×2500mm(W×D×H),净成形高度突破2.5m,满足超高尺寸零部件一体化成形需求。

针对特定应用的解决方案:例如,联泰科技开发了光敏感树脂3D打印技术的特殊精确度,以创建轮胎模具的细节,准确性和细节远远超过了传统的工艺。这使轮胎模具打开了无限的设计空间,并且可以实现人为难以达到的复杂形状。

block 趋势

指数级别的速度,人工智能将重新定义增材制造硬件的迭代

通常,软件的迭代速度是快的,硬件的迭代速度是慢的,增材制造从诞生起就带有数字化的特点,通过人工智能推动数字孪生的发展,AI的出现提供了解决方案,以应对当前技术硬件方面效率低下和成本高昂的挑战。(延伸阅读:人工智能带来3D打印设备开发效率和准确性的巨大飞跃!

历史机遇,商业航天成为增材制造发展的巨大金矿

商业航天领域对增材制造技术的需求不断增长,商业航天对于低成本、大尺寸增材制造部件的需求有望提升,以满足更密集的发射任务以及降本增效的需求。中国的增材制造技术的应用不仅推动了商业航天技术的进步,也为其带来了显著的成本效益和效率提升,成为推动行业发展的重要力量。(延伸阅读:国内商业航天产业将进入发展黄金期,将催生金属3D打印怎样的发展?

全球化,以一种新的方式呈现

全球化不再是单一的、由少数国家主导的过程,而是变得更加多元、平等和包容,同时也更加依赖于数字技术和网络社会的发展。中国公司还需要与国际合作伙伴进行更多的合作,这可以引入不同的观点,并促进技术交流,这最终使多方受益,并为未来的增材制造行业增长铺平道路,系统布局全球发展的中国企业将抓住更广阔的发展机遇。(延伸阅读:从研发端催化高通量3D打印势能!Dyndrite加入ACAM德国亚琛增材制造中心社区

block 竞争,新维度

此前,中国增材制造公司之间的过度价格竞争会影响利润率, 为了更可持续的发展,在竞争中脱颖而出,增材制造公司需要通过专注于质量,独特的产品和价值服务的服务来脱颖而出。同时,公司需要为国际市场开展专利布局,以确保未来的竞争力和长期发展实力,在这方面香港和新加坡是设立区域性海外管理总部的战略支点(延伸阅读:NAMIC 全球增材制造峰会GAMS:新加坡的创新、可持续性和战略合作)。

一起期待建立更好的信任、合作、共创,面向更可持续的未来,2025年共同见证中国伟大的变化!

insight

知之既深,行之则远。基于全球范围内精湛的制造业专家智囊网络,3D科学谷为业界提供全球视角的增材与智能制造深度观察。有关增材制造领域的更多分析,请关注3D科学谷发布的白皮书系列。


白皮书下载 l 加入3D科学谷QQ群:106477771
网站投稿 l 发送至2509957133@qq.com
欢迎转载 l 转载请注明来源3D科学谷 l 链接到3D科学谷网站原文

]]>
//www.mountainsine.com/?feed=rss2&p=38332 0
基于晶粒形貌的增材制造力学行为数值模拟 //www.mountainsine.com/?p=38481 //www.mountainsine.com/?p=38481#comments Mon, 30 Dec 2024 06:52:57 +0000 //www.mountainsine.com/?p=38481 谷专栏

3D科学谷洞察

“通过模拟电弧增材制造过程中的温度场、微观组织变化,并结合晶体塑性模型,可以有效地预测和理解电弧增材制造中材料的各向异性力学行为。这些研究对于优化增材制造工艺、提高构件性能具有重要的指导意义。”

Valley_AI_MLpart_AI

摘 要:为了研究电弧增材制造中材料的各向异性力学行为,本文建立了双椭球热源模拟电弧增材制造过程中的温度场,建立Monte Carlo模型模拟增材层截面微观组织的变化,建立晶体塑性模型表征晶粒形貌对材料力学行为的影响规律,从而修正位错动力学模型,得到基于晶粒形貌特征的电弧增材制造中各向异性的力学行为数值模拟方法。

修正后的位错动力学模型可以很好地反映出电弧增材制造工艺特征导致的材料各向异性行为,且与试验结果一致。电弧增材制造构件在增材高度方向上的力学性能显著低于热源移动方向的力学性能,在增材高度方向上和热源移动方向上晶粒尺寸比达到7.5 mm/1.3 mm时,屈服强度比达到787.8 MPa/865.2 MPa。钛合金在600℃以上出现明显的材料软化,这主要是晶粒球化导致的。

关键词:电弧增材制造;位错动力学;蒙特卡洛模型;晶体塑性模型;力学性能

block 1 引言

Ti-6Al-4V合金具有良好的比强度、抗拉强度和耐腐蚀性,广泛应用于航空航天、汽车、化工与海洋工程等领域[1]。丝材电弧增材技术(WAAM)因其成本低、增材效率高、适用广泛和材料利用率高等优点,成为制备大尺寸且形状复杂的Ti-6Al-4V合金部件的重要方法[2]。

对增材制造的数值模拟是展示增材制造机理和提升增材制造水平的重要手段,其中对微观结构和力学性能的数值模拟尤为重要[3]。在模拟微观机构的方法中,蒙特卡洛模型是一种常用的方法,具有计算效率高的特点。Zhang等[4]采用双尺度蒙特卡洛方法模拟了激光增材制造工艺下Ti-6Al-4V凝固过程中β晶粒的形成以及冷却后β晶粒向α晶粒转变的过程。在电弧增材过程中,增材截面上β晶粒以等轴晶和柱状晶的方式生长,晶粒尺寸的变化影响了结构的力学性能,材料的屈服强度随晶粒尺寸增大而减小。Wang等[5]研究了电弧移动方向及层间停留时间对钛合金的晶粒形貌和力学性能的影响。Wu等[6]采用光学显微镜、X射线衍射仪、扫描电镜和标准拉伸实验等试验研究了热累积对电弧增材Ti-6Al-4V的微观结构和力学性能的影响。

“ 3D Science Valley 白皮书 图文解析

valley_原位监测

晶体塑性力学模型根据材料内部各滑移系开动后的累积剪切应变来模拟材料的塑性变形,可以有效计算模型的塑性变形和力学性能。苑红磊等[7]根据蒙特卡洛方法和晶体塑性模型,研究了搅拌摩擦焊工艺下6005A-T6 铝合金的力学行为。Ti-6Al-4V的力学性能由位错密度和晶粒尺寸共同决定[8,9]。Zhang等[10]研究了搅拌摩擦焊工艺下Ti-6Al-4V的微观组织变化和基于位错演化的力学性能,预测屈服强度与试验吻合良好。Babu等[11]建立了基于位错密度和空位浓度演化的本构模型,研究了Ti-6Al-4V材料在不同应变率及不同温度下的塑性变形。

在增材层材料中,柱状晶具有各向异性的力学性能,而基于位错密度和空位浓度演化的本构模型建立在各向同性的假设上,难以准确模拟柱状晶的力学性能。因此,本文通过蒙特卡洛与晶体塑性模型相结合的方法,计算柱状晶区域不同方向上的应力应变曲线,进而修正基于位错密度和空位浓度演化的位错动力学数值模型来表征柱状晶的各向异性力学行为。

block 2 理论与方法
2.1 移动热源模型

采用ABAQUS软件建立有限元模型并进行热分析,材料为Ti-6Al-4V。有限元模型尺寸如图1所示,共有10层,扫描速度为600 mm/min,电流为140 A,增材形式为往复堆积。

FL Mold_1图1 热传导分析有限元模型

Fig.1 Finite Element Model for heat conduction analysis

使用双椭球热源来模拟电弧增材制造过程中的热输入,其前半部分的热流密度qf由方程(1)描述,后半部分的热流密度qr由方程(2)描述[12]

FL Mold_for_1

(1)

FL Mold_for_2

(2)

式中Q图片UI表示热源热量(U为电压,I为电流,图片为热效率,图片=0.8),ff和fr为电弧能量在双椭球热源前后半轴上的分布系数,且ff+fr=2。af,ar,b和c为双椭球热源的形状参数。

2.2 蒙特卡洛数值模型

在蒙特卡洛方法中,将计算域离散成格点,每个格点上分配离散变量来表征该处的微观状态,具有相同离散变量的相邻格点共同构成一个微观晶粒。计算区域采用蒙特卡洛模型中的N1×N2=NMC网格进行离散。格点能量可以表示为

FL Mold_for_3

(3)

式中J为常数,m为与该格点相邻的晶格数,δSiSj为克罗内克函数,Si为随机选取的当前格点,Sj为当前格点的相邻格点。

随机选取一个晶格,计算格点能量,随后选取任意相邻格点的取向数进行更新,计算改变后能量的变化ΔE,并通过晶粒重取向准则进行判断是否接受取向数的改变。各向异性的晶粒重取向准则表示为

FL Mold_for_4

(4)

式中pl和pv分别为电弧移动方向和沉积方向上取向数改变的概率,取决于该方向上的温度梯度,kB为玻尔兹曼常数,T为温度。

蒙特卡洛步数在时间域离散形式下与温度和时间之间的关系可以表示为

FL Mold_for_5

 

(5)

式中l0为初始晶粒尺寸,λ为格点长度,a1和n为模型系数,K1和n1为晶粒生长系数,D可表示为

FL Mold_for_6

(6)

式中Vm为原子摩尔体积,A为模型系数,Z为单位面积内的平均原子数,Na为阿伏伽德罗常数,h为普朗克常量,ΔSf为熔熵,γ=0.5 J/m2为边界能。

2.3 晶体塑性力学模型

在增材过程中,增材区域上部以柱状晶为主,在电弧移动方向和沉积方向上具有不同的力学性能,因此根据蒙特卡洛方法计算得到的多晶体模型,建立晶体塑性力学模型,计算柱状晶不同方向上的力学性能。晶体的总变形梯度可以表示为

F=FeFp

(7)

式中Fe为晶格拉伸和刚性旋转的弹性变形梯度,Fp为晶体内部滑移的塑性变形梯度,与滑移速率的关系可表示为

FL Mold_for_7

(8)

式中N为滑移系个数,mw和nw分别为第w滑移系的滑移方向和其法线方向,图片为第w滑移系的剪切应变率,可表示为

FL Mold_for_8

(9)

式中图片为参考应变率,m为率敏感系数,τω为第ω滑移系的剪切应力,sgn(τω)为符号函数,gω为临界分剪切应力,演化方程为

FL Mold_for_9

(10)

式中N为滑移系数目,hωυ为潜硬化模量,可表示为

FL Mold_for_10

(11,12)

式中f为硬化比例,hww为自硬化模量,h0为初始硬化模量,τ0为屈服应力,τs为饱和临界应力,γ为所有滑移系的累积剪切应变。

2.4 位错动力学模型

钛合金的力学性能归因于晶粒尺寸、位错之间的长程相互作用和位错穿过短程障碍的运动,可以分为三部分。

FL Mold_for_11

(13)

式中第一项表示位错移动通过短程障碍的作用力,第二项表示位错的长程相互作用力,σath为剪切强度。kb为玻尔兹曼常数,p=0.3和q=1.8为比例系数,图片为参考应变率,图片为塑性应变率。Δf0Gb3为克服短程障碍需要的活化能,其中Δf0为温度相关的系数,b为博格斯矢量,G为剪切模量,m为泰勒因子,α为比例系数,图片i为位错密度,其演化模型分为硬化和动态回复两部分。θ为拉伸方向与热源移动方向的夹角,范围为0~π/2,kθ=1.6×103 MPa·m1/2,Dθ为该拉伸方向下的晶粒尺寸,可以表示为

FL Mold_for_12

(14)

在硬化过程中,固定位错密度的增殖与塑性应变率成正比

FL Mold_for_13

(15)

式中Λ为平均自由程,g为晶粒尺寸,s为亚晶粒尺寸。亚晶的形成和演化可表示为

FL Mold_for_14

(16)

式中Kc为与温度相关的模型参数,列入表1。等温条件下的晶粒生长模型可表示为

FL Mold_for_15

(17)

式中g0为初始晶粒尺寸,K为模型参数。

位错密度的动态回复主要由位错滑移、攀移[13]和晶粒球化[14]三部分构成

FL Mold_for_16

(18)

式中Ω为模型系数,cr为材料常数,图片eq为平衡位错密度,图片为球化率,Ψ为校正系数。球化分为动态和静态两部分

Xg=Xd+(1-Xd)Xs

(19)

FL Mold_for_17(20)

FL Mold_for_18(21)

式中Xd和Xs分别为动态球化量和静态球化量,M,kp和B为随温度变化的材料参数。

材料的表观扩散率Dapp可表示为

FL Mold_for_19(22)

式中D1为晶格扩散系数,Dp为沿位错线扩散系数,Dp0为材料参数,Qp为活化能,图片为位错横截面的原子数,nρ近似等于图片为单位面积内的原子数。晶格扩散系数会受到α相和β相体积分数的影响

FL Mold_for_20(23)

式中cv为空位浓度,f为β相的体分比,w为模型系数。Da和Db分别为α相和β相的晶格扩散系数。

假设只有长程作用力对空位的形成有影响,加入温度变化的影响,空位浓度产生和湮灭的模型为

FL Mold_for_21(24)

式中Ω0=1.76×10-29 m3为原子体积,图片=0.1为空位生成的能量分数。

为了计算流动应力的演化过程,将位错密度和空位浓度相关公式转化为迭代形式

FL Mold_for_22(25)

FL Mold_for_23(26)

block 3 结果与讨论

温度场与不同增材层的节点温度历程如图2所示,灰色部分代表增材过程中的熔池区域。随着增材层数的增大,热量逐渐累积,第二增材层节点的峰值温度为1844.55 ℃,到第十层节点峰值温度升高至2123.63 ℃。

FL Mold_2图2 温度分布及不同增材层沉积时节点温度时程曲线

Fig.2 Temperature distribution and node temperature history during deposition of different additive layers

将得到的截面节点温度历程代入蒙特卡洛数值模型,得到增材层截面的微观结构,如图3所示。增材层底部的晶粒以等轴晶为主。随着增材层逐渐升高,热量逐渐累积,等轴晶的平均晶粒尺寸更大。在增材层上部,其散热以向底部单向散热为主,晶粒沿温度梯度增大的方向生长,以柱状晶为主。

FL Mold_3图3 增材层截面微观结构

Fig.3 Cross section microstructure of additive layers

根据蒙特卡洛方法得到的微观结构,重构了晶体塑性多晶体模型,如图4所示,其中,等轴晶部分晶粒取向采用随机取向,柱状晶部分晶粒取向选取〈0 0 1〉取向,以及附近的随机取向,进行晶体塑性计算。

FL Mold_4图4 晶体塑性有限元模型

Fig.4 Crystal plasticity finite element model

β相晶粒为体心立方(BCC)结构,具有48个滑移系,图片取为0.001/s。柱状晶区域的应力应变曲线如图5所示。其中模型沿纵向拉伸时,屈服强度为867.3 MPa。沿垂向拉伸时,屈服强度为788.4 MPa,与试验值平均屈服强度803 MPa[15]对比,误差为1.8%,验证了晶体塑性力学模型的有效性。

FL Mold_5图5 不同拉伸方向下的应力应变曲线

Fig.5 Stress-strain curves under different tensile directions

根据修正后的位错动力学数值模型计算得到的不同温度下柱状晶纵向和垂向拉伸的应力应变曲线如图6和图7所示。纵向拉伸条件下常温时的屈服强度为865.2 MPa,600 ℃时屈服应力为418.76 MPa,1000 ℃时屈服应力为9.3 MPa。垂向拉伸条件下常温时的屈服强度为787.8 MPa,600 ℃时屈服应力为379.8 MPa,1000 ℃时屈服应力为8.3 MPa。随着温度升高,屈服应力逐渐降低。在600 ℃~1000 ℃时,应力-应变曲线出现明显软化。

FL Mold_6图6 不同温度下纵向拉伸的应力应变曲线

Fig.6 Stress-strain curves under longitudinal tension at different temperatures

FL Mold_7图7 不同温度下垂向拉伸的应力应变曲线

Fig.7 Stress-strain curves under vertical tension at different temperatures

block 4 结 论

本文提出了基于蒙特卡洛模型和晶体塑性模型相结合的微观结构-力学行为一体化计算模型,并与试验对比验证了模型的有效性。修正了位错动力学模型,能够更好地表征具有各向异性特征的柱状晶的力学行为。在常温下,纵向拉伸的屈服强度为865.2 MPa,垂向拉伸的屈服强度为787.8 MPa,具有明显差异。随着增材层的升高,晶粒尺寸逐渐增大,晶粒形貌由等轴晶向柱状晶转变。随着温度升高,屈服强度逐渐降低。在600 ℃~1000 ℃时,应力应变曲线出现明显软化。

来源
材料成型及模拟分析 l

基于晶粒形貌的增材制造力学行为数值模拟

Citation

王艺飞,陈静远,张 昭.基于晶粒形貌的增材制造力学行为数值模拟[J].计算力学学报,2024,41(5):837-842.

l 谷专栏 l

欢迎高校及科研机构、企业科学家加入谷专栏,与业界分享对推动增材制造发展起关键作用的共性基础科研与应用成果,欢迎扫描下方图片二维码提交您的信息。

谷专栏


白皮书下载 l 加入3D科学谷QQ群:106477771
网站投稿 l 发送至2509957133@qq.com
欢迎转载 l 转载请注明来源3D科学谷

]]>
//www.mountainsine.com/?feed=rss2&p=38481 0
金属增材制造的多物理场物质点有限元法…l 【焦点 l 模拟、AI】 //www.mountainsine.com/?p=38480 //www.mountainsine.com/?p=38480#comments Fri, 27 Dec 2024 12:08:39 +0000 //www.mountainsine.com/?p=38480 谷专栏

3D科学谷洞察

“首件即合格”,数据与算法的驱动的智能化增材制造方式正在掀起3D打印行业的自我革命,是增材制造走向智能制造的跨时代金矿与赋能工具。”

Valley PBF DFEDPART_PBF

block 金属增材制造的
     多物理场物质点有限元法

李明健,陈嘉伟,廉艳平
北京理工大学先进结构技术研究院

金属增材制造过程涉及复杂的热-流-固强耦合问题,对数值模拟算法的精度和效率提出了巨大的挑战。针对该问题,本文提出了多物理场物质点有限元法。该方法采用结构化背景网格、有限单元和物质点离散求解各物理场,通过分区求解和界面耦合的方式实现热-流-固耦合求解。对于潜在熔化区域和未发生熔化的区域,分别采用物质点和有限元离散,结合了两者在求解材料特大变形和小变形问题上的各自优势,能够在保证计算精度的前提下有效提升计算效率。数值算例表明了本文算法的热-流-固多场耦合计算精度、相比于已有算法的高效性以及物质点和有限元离散区域界面处温度和应力的连续性。本文工作为金属增材制造过程多物理场耦合问题提供了一种高效的数值模拟方法。

block 冷喷涂中氧化物影响的物质点法模拟

陈聪,苏浩,刘岩
清华大学航天航空学院

冷喷涂利用冲击载荷下材料的塑性变形实现金属间的固态结合,在表面修复、特殊材料制备和增材制造等工程应用方面具有重要意义。原材料表面的氧化物是影响冷喷涂中材料结合效率和粘接强度的重要因素之一。本文采用物质点法研究了颗粒及基底表面氧化物对粘接过程的影响。通过分析界面处氧化物的残留情况,借助定义的颗粒内极端塑性变形区的体积比,给出了不同冲击速度下颗粒和基底氧化物对接触面积和塑性变形程度的影响规律。当氧化物存在时,提高颗粒的冲击速度能够同时增加新鲜的金属表面和塑性变形。

block 金属增材制造的
     多物理场物质点有限元法

李明健,陈嘉伟,廉艳平
北京理工大学先进结构技术研究院

金属增材制造过程涉及复杂的热-流-固强耦合问题,对数值模拟算法的精度和效率提出了巨大的挑战。针对该问题,本文提出了多物理场物质点有限元法。该方法采用结构化背景网格、有限单元和物质点离散求解各物理场,通过分区求解和界面耦合的方式实现热-流-固耦合求解。对于潜在熔化区域和未发生熔化的区域,分别采用物质点和有限元离散,结合了两者在求解材料特大变形和小变形问题上的各自优势,能够在保证计算精度的前提下有效提升计算效率。数值算例表明了本文算法的热-流-固多场耦合计算精度、相比于已有算法的高效性以及物质点和有限元离散区域界面处温度和应力的连续性。本文工作为金属增材制造过程多物理场耦合问题提供了一种高效的数值模拟方法。

block 扫描策略对增材制造
     钛铝异质合金组织性能影响

贺晨1李家栋2孙晨1赵宇辉1赵吉宾1王志国1何振丰1
1.中国科学院沈阳自动化研究所工艺装备与智能机器人研究室2.东北大学材料科学与工程学院

实现物性差异大钛-铝异质合金复合增材制造,对高比强度钛-铝复合结构在航空重大装备上应用具有重要意义。本文以AlTiVNbSi高熵合金为中间过渡层,采用激光熔化沉积制备了Ti-Al异质合金复合试样,基于金相显微镜(OM)、扫描电子显微镜(SEM)、显微硬度、室温拉伸等方法,研究了扫描策略对Ti-Al异质界面区组织性能的影响规律。结果表明:扫描策略优化可以显著改善异质界面区的结合情况,与带状扫描策略相比,环状扫描获得的微观组织细小、致密且晶粒生长方向杂乱多变;其界面层厚度约为10μm,比带状扫描下界面层厚度减薄了50%;同时,界面结合区的抗拉强度也明显提高,最高抗拉强度约为235MPa,提高了约20.5%,拉伸试样断裂位置发生在钛合金与高熵合金界面处。

block 基于声音识别技术的
     增材制造过程质量预测技术研究

丁远强
广西轻工技师学院

针对增材制造过程质量不稳定的问题,提出一种基于声音识别技术的增材制造过程质量预测(Sound Recognitionbased Additive Manufacturing Process Quality Prediction,SRAM-PQP)方法。该方法通过音频信号预处理、声音特征提取、机器学习模型训练,实现增材制造零件缺陷的精准预测。实证结果表明,SRAM-PQP方法的预测准确率达96.67%,F1值达96.75%,对不同缺陷类型均展现出良好的预测性能。

block 铝合金粉末雾化过程数值模拟及实验研究

刘英杰1,2,3胡强1,2,3赵新明2,3张少明3
1.有研粉末新材料股份有限公司金属粉体材料产业技术研究院2.有研增材技术有限公司3.北京有色金属研究总院

采用数值模拟和实验验证相结合的方法研究铝合金粉末雾化过程,系统地对熔体在不同盘形表面铺展运动特性和熔体薄液膜的破碎规律,以及破碎后形成液滴的飞行冷却情况进行研究,结果表明:球形盘表面液膜相对于盘面的滑移更小,液膜铺展得更均匀,盘面的传热更稳定,相同工况下球形盘连续液膜边界直径相比增加了约40%,最大液膜速度增加约19%,雾化液滴中位径D50减小约12.3%,液滴粒径分布更为集中,对粉末粒径及粒度分布的控制更高效。

block 基于选区激光熔化的多孔结构工艺性能研究

甘艺良1伊明扬1叶焰杰2曾达1陈靖1马腾1
1.大博医疗科技股份有限公司基础研究院2.厦门医疗器械研发检测中心有限公司力学实验室

增材制造(3D打印)作为一种先进成型技术,在复杂多孔结构制造领域具有天然的优势。为研究3D打印成型多孔结构的工艺-性能规律,基于Ti-6Al-4V合金(TC4)材料及选区激光熔化(SLM)的3D打印方式成型多孔结构,通过正交实验设计的方法,选取SLM选区激光熔化工艺参数包括激光功率、扫描速度、搭接距离为试验因素,利用极差及方差分析,研究不同工艺因素对金属选区激光熔化(SLM)3D打印多孔样件的力学性能影响规律及相关因素对不同性能指标的影响程度。最终利用线性回归方程拟合的方式,获得相关因素与性能指标的线性回归方程关系,通过回归关系方程预测最优性能组合的理论性能值并与实际测试值进行比对,理论值与实际值匹配良好,证明了通过正交实验方法建立因素条件与性能的函数映射关系并对SLM成型多孔结构进行性能预测的可行性和准确性。

block 3D打印C-PEEK的
     仿生结构设计和力学行为分析

邵剑锋1巢昺轩1马思齐2李权洪2王美荣3宋晓国3何培刚2
1.昌河飞机工业(集团)有限责任公司2.哈尔滨工业大学材料学院特种陶瓷研究所3.哈尔滨工业大学材料结构精密焊接与连接全国重点实验室

为了分析3D打印碳纤维增强聚醚醚酮(C-PEEK)复合材料的力学行为,探索最优工艺参数进行仿生结构设计,研究了碳纤维含量、打印喷头温度、平台温度、切片层厚度、打印速度、填充度、填充直线角度、填充形状、热处理温度及保温时间等多个工艺参数下,3D打印C-PEEK的力学性能演化规律。结果表明:含10 wt.%碳纤维的C-PEEK拉伸性能最好,并且最佳的3D打印参数为:打印喷头温度440℃、平台温度130℃、切片厚度0.2mm、填充度100%、90°直线填充、打印速度40mm/s、保温腔90℃。此外,根据最佳3D打印参数设计兼具蜂窝多孔和Bouligand旋转夹层的仿生结构,开展抗压强度测试并进行压溃行为分析,发现当层间旋角为30°时对应的蜂窝-Bouligand仿生结构的抗压强度可达24.1 MPa,且具有优异的非灾难性断裂特征。

l 谷专栏 l

欢迎高校及科研机构、企业科学家加入谷专栏,与业界分享对推动增材制造发展起关键作用的共性基础科研与应用成果,欢迎扫描下方图片二维码提交您的信息。

谷专栏


白皮书下载 l 加入3D科学谷QQ群:106477771
网站投稿 l 发送至2509957133@qq.com
欢迎转载 l 转载请注明来源3D科学谷

]]>
//www.mountainsine.com/?feed=rss2&p=38480 0
面向散热性能的多孔结构多尺度等几何拓扑优化…l 【焦点 l 点阵多孔】 //www.mountainsine.com/?p=38479 //www.mountainsine.com/?p=38479#comments Thu, 26 Dec 2024 15:37:37 +0000 //www.mountainsine.com/?p=38479 谷专栏

根据3D科学谷的市场洞察,国内近期关于多孔结构在多尺度等几何拓扑优化、力学行为、吸能特性以及特殊性能(如负泊松比)设计方面的最新研究进展,对于航空航天、信息电子等领域的应用具有重要意义。

本期,通过节选近期国内在点阵多孔材料方面的实践与研究的多个闪光点,3D科学谷与谷友一起来领略的这一领域的研究近况。

“ 3D Science Valley 白皮书 图文解析

valley 超材料

3D科学谷洞察

“ 增材制造点阵多孔结构的发展趋势指向了更复杂和多样化的几何形状制造,点阵结构的性能优化、新型金属材料体系的开发以及多孔材料的定向化合成。这些进展为多孔结构在航空航天、电子、生物医学、能源环境等领域的应用提供了新的可能性。”

lattice part

block 面向散热性能的多孔结构
     多尺度等几何拓扑优化

黄明喆1,2肖蜜1,2刘喜亮1,2沙伟1,2周冕1,2高亮1,2
1.华中科技大学国家智能设计与数控技术创新中心2. 华中科技大学智能制造装备与技术全国重点实验室

摘要:

多孔结构具有轻质、散热快等特点,在航空航天、信息电子等领域应用广泛,提出了一种面向散热性能的多孔结构多尺度等几何拓扑优化方法。在微观尺度,采用水平集函数描述三周期极小曲面点阵的几何构型,构建了Kriging元模型,预测点阵的宏观等效热学属性,从而降低计算成本;在宏观尺度,以最小散热柔度为目标,建立了多孔结构的多尺度拓扑优化模型,引入等几何分析提高了结构性能分析的计算精度,结合等几何映射技术开展了非规则几何结构的多尺度拓扑优化设计,避免了非规则设计域中点阵裁剪导致的几何特征缺损等问题;最后,通过数值算例验证了所提出方法的有效性。

结果表明,提出方法可实现非规则几何结构的散热性能优化设计,优化得到的轻质梯度多孔结构具有较好的散热性能,在实际工程中具有广阔的应用前景。

block 基于MJF的极小曲面
     结构力学行为及吸能特性研究

肖江海、侯俊玲、李群
机械结构强度与振动国家重点实验室、西安交通大学航天航空学院

摘要:

极小曲面结构是一种表面连续光滑的曲面多孔结构,具有低密度、高强度以及优良的减震吸能等特性,在航空航天、汽车工业、机械装备等领域的结构轻量化设计方面,具有广泛的应用前景。

本课题采用多射流熔融(MultiJet Fusion,MJF)增材制造技术,结合参数化建模方法,以尼龙PA12为原料制备了体积分数同为20%的3种极小曲面多孔结构(G曲面、P曲面、D曲面)。利用准静态压缩试验和数值模拟,分析了不同极小曲面结构的力学响应和吸能特性。

研究发现:在力学响应方面,3种极小曲面的平台名义应力分别为4.0MPa、2.1MPa和4.75MPa,明显高于相同体积分数下BCC点阵结构的平台名义应力(2.0MPa),具有更好的承载能力;在吸能方面,G曲面、P曲面和D曲面的单位体积吸能量近似可达BCC点阵结构的7倍、4倍、8倍。综上所述,与传统BCC点阵结构相比,MJF增材制造工艺制备的极小曲面结构能够更好的分散压力,减少应力集中,表现出优异的力学性能和吸能特性,具有非常好的应用前景。

block 射流熔融3D打印
     桁架点阵结构的力学性能研究

王轩玉1李楠1,2乌日开西·艾依提1贾儒1
1.新疆大学机械工程学院2. 东莞理工学院

摘要:

通过组合叠加方法设计了七种桁架胞元构型,并采用射流熔融(Multi Jet Fusion, MJF)3D打印技术制备具有相同孔隙率的点阵结构试样,通过单轴压缩实验和有限元模拟,分析不同点阵结构的力学性能、变形模式及吸能能力。研究发现,七种结构在压缩过程中都经历了线弹性阶段、平台应力阶段和致密化阶段,其中以弯曲为主导型的SBO型点阵结构变形过程相对平稳,其平台应力(σpl=2.76 MPa)和平台应变区间长度(23%~72%)高于其他点阵结构,累积吸能值达到702 J/mm3,表现出优异的力学性能和吸能能力。

block 结构参数对选区激光熔化成形
     AlSi10Mg金刚石点阵结构拉伸性能的影响

吴鸿飞、王国伟、沈显峰、杨家林、王晨光、陈金明
中国工程物理研究院机械制造工艺研究所

摘要:

选区激光熔化制备金属点阵结构由于具有结构设计自由度大、成形零件具有轻量化、缓冲吸震、隔热散热等优势在航空航天等领域具有广泛的工程应用前景。随着应用的不断拓展,对点阵结构的拉伸性能也提出了要求。通过有限元模拟,研究了金刚石单元结构参数对Al Si10Mg点阵结构拉伸性能的影响,并进行了试验验证。

结果表明:所设计的点阵结构成形效果较好,具有稳定的力学性能;支杆杆径和孔隙率对点阵结构抗拉强度存在显著影响;随着支杆长径比的减小,点阵结构应力集中区域由节点处向支杆中间位置移动,长径比在1.4左右时点阵结构具有较为均匀的应力分布;在点阵结构外层包裹薄壳结构,可使点阵结构整体应力分布更为均匀。试验与仿真结果相吻合,可通过有限元方法对点阵结构的拉伸性能和变形失效方式进行有效预测。

block 增材制造自支撑点阵-实体
     复合结构拓扑优化方法

云峰1,2王有治1,2宋娇1,2耿磊1,2张乘虎3刘继凯3
1.内燃机可靠性国家重点实验室2. 潍柴动力股份有限公司3. 山东大学机械工程学院

摘要:

随着先进设计概念和增材制造技术的发展与革新,多尺度结构的设计及制造在学术界被广泛研究。点阵-实体复合结构兼具轻量化、高性能、多功能属性,展现了巨大的应用前景和科研价值。为此,提出了一种增材制造自支撑点阵-实体复合结构拓扑优化方法,通过建立一套创新的层级材料插值模型,分别定义了自支撑单元密度和单元内点阵单胞-实体材料的相对密度。

其中,对自支撑单元密度进行增材制造滤波以实现结构的增材制造自支撑特性,利用计算均化方法及多项式插值,对点阵单胞-实体材料的等效刚度进行了点阵域-实体域统一插值,以此实现优化过程点阵-实体的无缝双向切换。

最后,通过数值计算案例对所建立算法的有效性和先进性进行了论证,结果表明,自支撑的点阵-实体复合结构在力学承载能力上优于传统的单一尺度自支撑拓扑优化结果。

block 不连续十字型
     点阵夹层结构的隔声性能

杨青苗1王文胜1,2,3张云豪1
1.河南科技大学工程力学系2. 机械装备先进制造河南省协同创新中心3. 工业装备结构分析国家重点实验室

摘要:

点阵夹层结构具有低密度、高比强度、高比刚度等优异特性,其基本周期单元之间存在较大的空间,具有很好的流通性,因此在隔声、降噪、传热、抗冲击和吸能等方面有很大的潜力。

本课题针对不连续十字型点阵夹层板单胞结构开展隔声性能分析,应用理论分析与数值模拟的方法绘制传声损失曲线,结合该结构在周期性边界条件下的振动特性对曲线进行分析,同时研究几何尺寸和材料参数对不连续十字型点阵夹层板结构隔声特性的影响,简要总结参数改变引起传声损失曲线变化的规律,研究结果可为工程实际中隔声结构的选择提供参考。

block 增材制造三维微点阵材料
     力学性能表征与细观优化设计研究进展

肖李军、李实、冯根柱、石高泉、宋卫东
北京理工大学爆炸科学与技术国家重点实验室

摘要:

三维微点阵材料是一种由复杂拓扑胞元周期性排列构成的超轻质结构材料,兼具极低的密度、优越的力学特性和良好的能量吸收等性能,是满足轻量化、抗冲击和多功能集成需求的重要新型战略材料.增材制造技术的快速发展,为三维微点阵材料的制备和优化设计带来了便利的条件,二者的结合为航空航天、轨道交通以及武器装备等领域实现防护结构轻量化和多功能一体化提供了新思路.为阐明增材制造三维微点阵材料的动态力学特性与变形失效机理,进一步开展材料多尺度优化设计,拓展增材制造微点阵材料在冲击防护等领域的应用,对增材制造三维微点阵材料力学行为与设计的研究成果进行了系统的综述和展望.依据增材制造三维微点阵材料的多尺度结构特征,分别评述了不同类型微点阵材料的宏观动力学响应与失效机制、细观性能表征与结构优化设计、微观组织特征与变形机理等方面的研究,展望了未来增材制造三维微点阵材料在冲击防护领域面临的问题和挑战.

block 基于转移脉冲火花放电通道的
     金属悬垂结构无支撑熔丝增材成形研究

庄津1段晓明1杨海欧2杨晓冬1
1.哈尔滨工业大学机电工程学院2. 西北工业大学材料学院

摘要:

针对电弧熔丝增材制造过程中高水平热输入带来的成形过程不稳定、微观组织不精细以及拉伸强度较低等问题,提出了一种以脉冲火花放电通道为热源的新型金属增材制造方法,此法火花放电通道形成在エ具电极与金属丝材之间,之后膨胀并转移至工具电极和成形件之间,有效降低了成形过程中的热输入。通过将该法应用于悬垂结构的无支撑成形,以倾斜角为45°的单元杆为研究对象,研究了放电电流、脉冲宽度、脉冲间隔、送丝速度和扫描速度对成形精度和形貌的影响,进而成功实现了倾斜角为0°~90°细长杆及体心立方点阵结构的无支撑增材制造。

block 梯度极小曲面
     点阵结构力学特性研究

杨磊1,2郑浩1张聪1闫春泽2
1.武汉理工大学交通与物流学院2. 华中科技大学材料科学与工程学院

摘要:

基于螺旋(Gyroid)型极小曲面点阵结构,设计包括两种线性渐变和两种矩阵渐变的四种梯度结构,通过实验及有限元分析方法分析了梯度设计对Gyroid型极小曲面点阵结构力学特性的影响.结果表明:通过激光选区熔化制备的样品致密度均在98%以上,具有极高的制备精度和可重复性;压缩实验表明四种梯度结构的变形过程一致,均是结构整体坍塌;与均匀结构对比,梯度结构的弹性模量提高了10%,10%-20%-10%梯度设计结构的累计能量吸收值最大.此外,对结构进行了有限元仿真,结果表明压缩过程中应力集中发生在转角处.

block 基于球体堆积模型设计的
     多胞薄壁结构抗冲击性能研究

胡敬坤、徐鹏、范志强、谭晓丽、李耀宙
中北大学航空宇航院

摘要:

多胞薄壁结构具有优异的缓冲吸能特性被广泛应用于国防工业中的抗冲击结构设计,本文基于体心立方堆积模式的启发,对体心立方结构进行了一系列的改造增强(增加肋板、改变混合结构、改变连接管角度),通过实验和数值模拟研究了模型形态、模型壁厚、连接管角度、冲击速度对其能量吸收和变形模式的影响.

结果表明:在球体中心添加连接肋的结构及体心立方和简单立方相结合的结构其比吸能和平均压溃载荷相较于普通结构分别增长了24%~38%和71%~90%,改造的结构使其拥有更好的承载和能量吸收能力;结构中添加外层球壳结构可以阻碍连接管的破坏坍塌,从而获得更高的能量吸收效率,连接管的角度也会对结构的承载能力造成一定的影响;连接管角度较小时该结构的吸能特性较好,并且连接管吸能特性对速度的变化并不敏感,其他结构组件的吸能特性会随着速度的增大而增大.

block 一种新的负泊松比
     吸能点阵结构设计

申文杰、叶红玲、田福威
北京工业大学材料与制造学部

摘要:

为了获得可实现负泊松比功能的吸能点阵结构,本文采用独立连续映射方法拓扑优化得到轻量化初始构型并结合星形结构设计了负泊松比吸能点阵结构,建立了点阵结构有限元模型并采用ABAQUS有限元软件对其压缩过程进行了数值仿真,分析了点阵结构的变形。随后与星形点阵结构在压缩性能上进行对比,包括压缩吸能性能与负泊松比特性。结果表明:所设计点阵结构拥有更高的吸能平台载荷和更大平台区间,同时兼顾负泊松比特性,但负泊松比效果有所牺牲。本文的研究为负泊松比吸能点阵结构优化设计提供了参考。

block 点阵结构单元力学性能
     及在结构轻量化设计中的应用

申会鹏1,2张天宇1李行雨1韩春阳1郭家宝1
1.河南工业大学机电工程学院2. 河南省超硬磨料磨削装备重点实验室

摘要:

针对特定功能点阵结构实现结构轻量化设计的问题,提出了拓扑优化方法,设计了一种点阵结构单元构型。首先,从实际载荷工况特征出发,构建了初始设计模型,根据拓扑优化思想,设计出了符合力学性能特性的创新点阵结构单元谱;其次,采用有限元分析方法,获取了点阵结构单元的力学性能,提出了以比刚度为指标的单元性能评价方法,得到了点阵结构的力学性能规律;然后,建立了典型点阵结构单元比例试件,进行了力学实验分析,通过实验数据对比,对点阵结构单元性能规律的准确性进行了验证;最后,将点阵结构性能规律应用于汽车发动机连杆的结构轻量化设计中,通过分析汽车发动机连杆的载荷特征来匹配点阵结构单元谱,填充了相应的点阵结构。

研究结果表明:填充后的连杆体积减少了45%,而比刚度提高了90%,验证了点阵结构单元数据库的有效性和实用性。该点阵结构单元数据库能够为复杂零件的结构轻量化设计提供有力的科学依据。

l 谷专栏 l

欢迎高校及科研机构、企业科学家加入谷专栏,与业界分享对推动增材制造发展起关键作用的共性基础科研与应用成果,欢迎扫描下方图片二维码提交您的信息。

谷专栏


白皮书下载 l 加入3D科学谷QQ群:106477771
网站投稿 l 发送至2509957133@qq.com
欢迎转载 l 转载请注明来源3D科学谷

]]>
//www.mountainsine.com/?feed=rss2&p=38479 0
清华大学 l AI与生物3D打印 //www.mountainsine.com/?p=38450 //www.mountainsine.com/?p=38450#comments Wed, 25 Dec 2024 11:36:07 +0000 //www.mountainsine.com/?p=38450 谷专栏

 

3D科学谷洞察

“AI技术可以加速个性化生物墨水的设计和生产,包括基于人工智能的虚拟染色技术,对细胞进行无损、快速的表征。AI技术可以加快具有个性化结构的打印模型的精确设计,包括使用CT和MRI等成像方式获取医学图像,进行3D建模以生成结构模型。AI技术有助于在正式打印过程之前离线设计最佳打印参数,并在正式打印过程中实时调整打印参数以保持对打印质量的控制。”

valley 人工智能part_AI

近几十年来,生物3D打印因其能够操纵生物材料和细胞以精确创建复杂结构的能力而引起了广泛的研究关注。然而,由于技术和成本限制,生物3D打印产品(BPP)从实验室到临床的临床转化受到设计个性化和生产规模扩大方面的挑战的阻碍。

最近,人工智能(AI)技术的新兴应用显著提高了生物打印的性能。然而,现有文献在方法论探索AI技术克服这些挑战以推动生物3D打印走向临床应用的潜力方面仍然不足。为此,来自清华大学的熊卓/方永聪/张婷课题组以质量源于设计(QbD)的理论框架为框架,提出了一种用于AI驱动的生物打印。QbD(Quality by Design)是一种质量控制体系,强调通过事前设计控制质量,被广泛用于制药业。其核心概念主要包括关键质量属性(CQA)、关键物料属性(CMA)、关键工艺参数(CPP)、设计空间(DS)、控制策略(CS)、风险评估(RA)。相关研究成果以“AI-driven 3D bioprinting for regenerative medicine: From bench to bedside”为题于2024年11月23日发表在《Bioactive Materials》上。

article_AIAI_1图1 人工智能驱动的3D生物打印QbD路线图,包含多尺度和多模态感知、数据驱动设计和在线过程控制,可用于生物墨水形成、模型结构、打印过程和功能调控四个关键要素

本文首先将QbD理论引入生物打印,然后总结AI在3D打印中的集成技术路线图,包括多尺度和多模态传感、数据驱动设计和在线过程控制。本文进一步阐述了人工智能在3D生物打印关键环节的具体应用,包括生物墨水配方、模型结构、打印过程和功能调控。最后,讨论了人工智能技术在进一步推进3D生物打印临床转化方面的当前前景和挑战。

1.AI驱动的生物3D打印QbD框架和路线图

生物3D打印包括四个关键要素:生物墨水配方、模型结构、打印过程和功能调控。每个要素由多个单元操作(UO)组成,其中可以集成AI驱动的QdD,例如生物墨水材料设计、微结构设计、打印过程控制以及功能表征和评估(图1)。

在生物打印中,每个UO集成各种传感器来捕获多模态数据,从而有助于获取对个性化设计和扩大生产至关重要的多尺度信息。感测过程通常包含三个连续阶段:(i)预感测,涉及对感测对象的预处理,例如组织切片制备和染色;(ii)感测,涉及利用各种传感器测量感测对象的特定属性并生成相应的传感器数据;以及(iii)后感测,涉及处理和分析收集到的传感器数据以得出定量感测结果,包括CQA,CMA和CPP。传统感测方法在精度,快速性,经济性,可重复性,安全性和可扩展性方面存在不足,从而阻碍了BPP的临床转化。作者将这些不足主要归因于以下三个关键因素:(1)“规模-深度-精度”矛盾(图2a);(2)信息丰富度不足;(3)自动化程度低。人工智能技术,尤其是深度学习方法,为上述挑战提供了可行的解决方案。因此,在生物打印过程中,人工智能驱动的传感产生了全面的结果,涵盖了打印结构的设计和制造以及生化和形态功能等方面(图2b)。

article_AIAI_2图2 多尺度和多模式感知

随着模型精度(或问题复杂性)的提高,相关成本(如财务投入、时间和人力资源)也相应增加,而边际精度则逐渐降低(图3a)。目前,已经出现了四种建模范式,包括实验设计 (DoE)、理论、计算和数据驱动范式(图3a)。鉴于挑战的复杂性和成本限制,传统范式面临瓶颈,正在向基于机器学习(ML)的数据驱动范式过渡。基于ML的数据驱动范式通常采用监督学习方法,可以简洁地定义为在输入指纹和输出属性之间构建可泛化的映射模型(图3b)。它主要包括三个关键步骤:指纹识别、训练、预测。

article_AIAI_3图3 数据驱动设计

作者提出了一种基于人工智能的通用在线过程控制流水线(图4a)。为了将CQA保持在高水平,通过多个传感器现场监测CQA、CMA和CPP,并根据合理的控制策略在线校正 CMA/CPP。同时确定了涉及上述过程的四大类人工智能模型:(i)CMA/CPP设计模型;(ii)CMA/CPP预测模型;(iii)CQA/过程预测模型;(iv)控制策略。

在设计阶段,离线数字孪生模型能够在数字世界中快速执行大量虚拟实验。因此,CMA/CPP的设计和优化可以通过更少的实际实验完成,从而降低成本和风险。在生产阶段,在线数字孪生模型通过监控数据和控制命令与实际生产过程相联系,旨在提高生产效率和质量(图4b)。通过在数字世界中模拟过程演变并预测其结果,可以加深对过程的全面理解,从而促进过程的持续改进。

article_AIAI_4图4 在线过程控制

2.人工智能驱动的生物墨水配方方法

生物墨水作为生物3D打印的主要元素,是保证BPP免疫、组织和功能特异性的重要基础。生物墨水通常包含细胞和生物材料。AI技术可以应用于这些过程中的每个UO,以加速BPP个性化生物墨水的设计和生产(图5a)。

基于人工智能的虚拟染色技术提供了一种解决方案,可以对采样细胞进行无损、快速的表征。该技术已应用于各种器官,如肝脏、肾脏、胃和肺。监督学习(使用配对图像进行训练)或无监督学习方法(使用非配对图像进行训练)可以实现两类任务:(i)从未染色样本的原始图像生成染色图像,从而避免耗费细胞的染色程序;(ii)从基本染色图像生成多样而复杂的染色图像,从而通过单一染色过程表征多种特性(图5)。

article_AIAI_5图5 人工智能驱动的生物墨水配方方法

3.人工智能驱动的模型结构方法

在确定生物墨水配方后,另一个关键要素是打印模型结构的设计。由于BPP的组织、结构和功能特异性,打印模型的结构需要个性化设计以满足性能要求。设计打印模型的典型过程包括以下步骤:首先,使用CT和MRI等成像方式获取患者目标器官/组织的医学图像;其次,基于这些医学图像进行3D建模以生成宏观结构模型;最后,设计内部微观结构。AI技术可以应用于这些过程中的每个UO,以加快具有个性化结构的打印模型的精确设计(图6)。

article_AIAI_6图6 人工智能驱动的模型结构方法

4.人工智能驱动的印刷过程方法

在获得打印模型后,打印工艺要素需要在确保细胞活力的同时精确制造设计的多尺度结构。为了提高打印质量,应在正式打印过程之前离线设计最佳打印参数;随后,在正式打印过程中,需要实时调整打印参数以保持对打印质量的控制。作者将相应的案例展示在图7中。

article_AIAI_7图7 人工智能驱动的印刷流程方法

5.人工智能驱动的功能调节方法

完成高质量结构的打印后,最后一个要素是对打印结构的功能调控。首先,成熟条件的设计对于功能化打印结构至关重要,从而将其转化为具有所需生物功能的BPP。随后,对于功能化的体外模型和体内植入物,使用非破坏性检测方法表征和评估其生物功能,以促进药物筛选、病理/药理学研究和临床功能评估等应用。同时,作者给出了相应示例展示在图8中。

article_AIAI_8图8 人工智能驱动的功能调节方法

最后,作者指出了生物3D打印中AI技术的未来方向,包括构建自然器官的流程;闭环主动学习流程以及蛮力学习、主动学习和混合学习的“精度成本”图景。

article_AIAI_9图9 生物打印中AI技术的未来方向

展望未来,人工智能与自动化的整合有望超越离散的UO,涵盖整个流程(图10)。基于人工智能的系统设计方法将统一各种对象的设计,包括生物墨水、打印模型、打印参数和成熟条件。这种集成方法将有效地考虑它们对不同属性的相互依赖影响。此外,基于人工智能的智能工厂的建立,将通过工业云、数字孪生等先进技术,实现对物质流和信息流的高效管理,实现临床诊断、原材料制备、模型设计、3D打印制造、疗效评估等全生命周期质量管理。

article_AIAI_10图10 全流程集成自动化示意图

文章链接:

https://doi.org/10.1016/j.bioactmat.2024.11.021

来源
EFL l

清华大学-熊卓、方永聪、张婷《Bioact. Mater.》综述:AI与生物3D打印

l 谷专栏 l

欢迎高校及科研机构、企业科学家加入谷专栏,与业界分享对推动增材制造发展起关键作用的共性基础科研与应用成果,欢迎扫描下方图片二维码提交您的信息。

谷专栏


白皮书下载 l 加入3D科学谷QQ群:106477771
网站投稿 l 发送至2509957133@qq.com
欢迎转载 l 转载请注明来源3D科学谷

]]>
//www.mountainsine.com/?feed=rss2&p=38450 0
新加坡科技局&港城大 l 4D打印马氏体时效钢!抗拉强度达到1538MPa //www.mountainsine.com/?p=38446 //www.mountainsine.com/?p=38446#comments Tue, 24 Dec 2024 14:23:57 +0000 //www.mountainsine.com/?p=38446 谷专栏

3D科学谷洞察

“机器学习被应用于增材制造材料性能预测和优化设计,可以利用大量的实验数据和算法预测材料性能并识别与其相关的结构特征,指导设计新材料的化学成分和微观结构,通过优化合金成分,可以提高钢材的可淬性,实现无热处理后的高强度。”

valley 人工智能part_AI

材料、结构、工艺和性能是提升增材制造(AM)加工部件多功能性的关键方面。因此,增材制造用新材料的蓬勃发展对于推动增材制造技术的成熟度和可持续性至关重要。

现有的用于增材制造的商用金属粉末是针对传统加工工艺路线(例如铸造、热等静压、放电等离子烧结等)进行设计和优化的,可能并非最适合增材制造,而且,经增材制造加工的商用金属材料大多需要进行后续热处理(PHT)才能获得良好的性能,这会消耗能源并排放二氧化碳。冶金行业是温室气体的最大排放源之一,其中热处理占据了相当大的比重。因此,进行可持续的合金设计以省去后续热处理是制造“绿色”金属材料的一个良好策略。

block【成果速览】

现有的用于激光增材制造(LAM)的商用粉末是为需要后续热处理(PHT)的传统制造方法而设计的。激光增材制造独特的循环热历程会在沉积过程中对材料产生本征热处理(IHT),这为开发适用于激光增材制造的新型材料提供了契机。

本项工作中,新加坡制造技术研究院谭超林以及香港城市大学杨涛教授等人借助机器学习制备了一种新型Fe-Ni-Ti-Al马氏体时效钢,以利用本征热处理效应,在激光增材制造过程中无需后续热处理就能原位形成大量析出物。钢中快速的析出动力学、定制的间歇沉积策略以及本征热处理效应,有助于通过在高密度位错上异质形核,在马氏体基体中原位析出Ni₃Ti。

所制造的钢抗拉强度达到1538MPa,均匀伸长率为8.1%,优于众多经激光增材制造加工后的高强度钢。 在当前主流的非原位4D打印中,三维打印结构随时间变化的演变(即性能或功能变化)是在部件成型之后发生的。

该项工作着重强调了通过将与时间相关的析出强化与三维几何形状塑造同步整合实现的原位4D打印,这种方式展现出了较高的能源效率和可持续性。 本研究结果通过对本征热处理与材料相互作用的理解和利用,为开发适用于激光增材制造的定制材料提供了新思路。

article_AI

相关成果以「Machine Learning Customized Novel Material for Energy-Efficient 4D Printing」为题刊登在Advanced Science上。

图1. 机器学习(ML)辅助Fe-Ni-Ti-Al新型马氏体时效钢(NMS)成分设计原理图。

article_AI_1

图2. 用于拉弗斯相(Laves phase)和Ni₃Ti析出物替代建模的不同机器学习模型在以下方面的性能对比:a 决定系数以及b 平均绝对误差(MAE)。将真实数据与随机森林(RF)回归模型针对c 拉弗斯相和d Ni₃Ti析出物预测所给出的预测数据点进行绘图对比,结果表明在已知合金成分的情况下,该模型在预测相含量方面具有很强的能力。

article_AI_2

图3. 概述了定制Fe-Ni-Ti-Al纳米材料的加工学习定制粉末、LDED工艺和力学性能。

article_AI_3

图4. 粉末和LDED处理NMS的ILP沉积策略的微观结构分析。

article_AI_4

图5. a 示意图展示了原位激光增材制造(ILP)样品中微柱的位置。bc 分别为从白色(微柱 1)和黑色(微柱 2)区域提取的微柱的形貌。d 取自原位激光增材制造样品(白色和黑色区域)以及原始粉末的微柱的压缩应力-应变曲线。ef 分别为粉末和黑色区域微柱的断口形貌。g 本项工作中4D打印纳米复合马氏体时效钢(NMS)的拉伸性能与众多经增材制造加工的高强度钢(均为成型态)的拉伸性能对比。

article_AI_5

block 【结论展望】

总之,这项工作借助机器学习定制了一种新型马氏体时效钢,使得在激光直接能量沉积(LDED)过程中无需后续热处理(PHT)就能原位形成析出物。

原位激光增材制造(ILP)沉积策略促进了带有高密度位错的马氏体基体的形成,并构建出一种层级化的双相结构。材料快速的析出动力学以及激光直接能量沉积所特有的本征热处理(IHT)效应促进了大量纳米级Ni₃Ti的原位析出。

通过微柱压缩试验评估的局部力学性能表明,与原料粉末相比,原位形成的Ni₃Ti析出物增强了经激光直接能量沉积加工的纳米复合马氏体时效钢(NMS)的强度。所制造出的纳米复合马氏体时效钢抗拉强度达到约1.54GPa,均匀伸长率为8.1%,优于众多经增材制造(AM)加工后的高强度钢。

这项工作凸显了利用激光增材制造独特热历程来开发高性能金属的潜在方法,从而进一步推动开发出功能更优、可持续性更好的适用于增材制造的新材料。

来源
材料设计 l

Adv. Sci.|新加坡科技局&港城大杨涛:4D打印马氏体时效钢!

链接
https://doi.org/10.1002/advs.202206607

l 谷专栏 l

欢迎高校及科研机构、企业科学家加入谷专栏,与业界分享对推动增材制造发展起关键作用的共性基础科研与应用成果,欢迎扫描下方图片二维码提交您的信息。

谷专栏


白皮书下载 l 加入3D科学谷QQ群:106477771
网站投稿 l 发送至2509957133@qq.com
欢迎转载 l 转载请注明来源3D科学谷

]]>
//www.mountainsine.com/?feed=rss2&p=38446 0
实现按需锚定和货物输送, 3D打印多功能水凝胶微型机器人 //www.mountainsine.com/?p=38448 //www.mountainsine.com/?p=38448#comments Mon, 23 Dec 2024 10:57:29 +0000 //www.mountainsine.com/?p=38448 谷专栏

 

article_pollen▲论文链接:https://doi.org/10.1002/adma.202209812

3D科学谷洞察

“微型机器人可以在生物流体中导航,并执行广泛的生物医学任务,如显微外科手术、药物输送、生物靶标的分离、生物传感和在单个活细胞内进行操作。微型机器人在生物流体或组织中的运动增加了它们的停留时间,并可进一步增强靶向药物递送。微型机器人在生物医学领域,如药物输送、显微外科手术、成像和监测、组织工程等应用前景广阔。3D打印技术的进步使得这些机器人能够更精准地执行复杂的生物医学任务。”

valley 微

cover_pollen

本研究由德国斯图加特的马克斯·普朗克智能系统研究所的Yun-Woo Lee及其所在团队主导,研究成果发表在《Advanced Materials》期刊上。该论文的主题是开发一种多功能的3D打印水凝胶微型机器人,灵感来源于花粉颗粒,旨在实现按需锚定和货物输送的功能。

随着医学技术的不断进步,微型机器人在靶向药物输送和治疗难以到达的深部病灶方面展现出巨大的潜力。然而,现有的无线微型机器人在生物体内的操作受到多种因素的限制,包括生物组织的复杂性和生物流体环境的多样性。为了克服这些挑战,研究者们提出了一种新型的多功能微型机器人,采用了三种不同的水凝胶材料,分别是嵌入铁铂(FePt)纳米颗粒的五元醇三丙烯酸酯(PETA)、聚N-异丙基丙烯酰胺(pNIPAM)和聚N-异丙基丙烯酰胺-丙烯酸(pNIPAM-AAc)。每种材料都具有特定的功能:PETA用于响应磁场以实现表面滚动和转向,pNIPAM用于温度响应以实现按需表面附着,而pNIPAM-AAc则用于pH响应的货物释放。

在研究过程中,研究团队采用了双光子聚合的3D微打印技术,利用Nanoscribe设备Photonic Professional GT制造出这些微型机器人。通过这种先进的打印技术,研究者们能够精确控制微型机器人的结构和功能,使其能够在生物环境中独立执行多种任务。具体而言,MPH机器人在温度升高时,外壳的pNIPAM材料会收缩,暴露出内部的刺状结构,从而实现对生物组织的可控附着。这种设计不仅提高了微型机器人的附着能力,还使其能够在生物体内灵活移动

article_pollen_1

在实验中,研究者们对MPH机器人的附着性能进行了评估,发现其在生物流体环境中能够有效抵抗外部干扰,保持稳定的附着力。通过COMSOL模拟,研究团队估算了微型机器人在生物通道内的升力和阻力,结果表明,MPH机器人在生物通道内的运动速度远低于通道中心的流速,这使得其在附着时能够有效抵抗流体的干扰。此外,研究还表明,MPH机器人的刺状结构在与生物组织接触时,能够提供显著的附着力和摩擦力,尤其是在软生物组织表面,表现出优异的附着性能。

article_pollen_2

为了实现按需药物释放,研究者们在MPH机器人的内部结构中引入了pH响应性材料pNIPAM-AAc。通过调节pH值,研究者们能够控制药物的释放速度和释放量,进而实现精准的药物输送。这一创新的药物释放机制使得MPH机器人在靶向治疗中具有更高的灵活性和有效性。

article_pollen_3

总的来说,本研究展示了一种新型的多功能水凝胶微型机器人,具有独特的设计和多样的功能,能够在复杂的生物环境中执行多种任务。通过将不同的刺激响应机制解耦,研究者们成功地实现了微型机器人的运动、附着和药物释放功能的独立控制。这一研究不仅为未来的医疗微型机器人设计提供了新的思路,也为实现更复杂的生物医学应用奠定了基础。随着技术的不断进步,未来的研究可以进一步探索如何优化这些微型机器人的性能,以满足更广泛的临床需求。

相关文献及图片出处
https://doi.org/10.1002/adma.202209812

来源
MNTech微纳导航 l 多功能水凝胶微型机器人:基于花粉颗粒的3D打印技术在靶向药物输送中的应用

l 谷专栏 l

欢迎高校及科研机构、企业科学家加入谷专栏,与业界分享对推动增材制造发展起关键作用的共性基础科研与应用成果,欢迎扫描下方图片二维码提交您的信息。

谷专栏


白皮书下载 l 加入3D科学谷QQ群:106477771
网站投稿 l 发送至2509957133@qq.com
欢迎转载 l 转载请注明来源3D科学谷

]]>
//www.mountainsine.com/?feed=rss2&p=38448 0