(一)界面特征和强化方法l 激光粉末床熔融多材料增材制造

以下文章来源于江苏激光产业技术创新战略联盟 ,作者激光红

谷专栏

激光粉末床熔融(LPBF)增材制造-3D打印技术在制造具有复杂结构和精细材料布局的金属多材料结构方面取得了进展。华南理工大学等科研机构的研究人员对激光粉末床熔融多材料结构增材制造的最新发展进展进行了全面回顾,包括:界面特性和强化方法,关键技术问题和潜在应用等,并对该领域未来研究方向进行了展望。

相关论文以“Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion”为题,发表在Virtual and Physical Prototyping 期刊。本期谷.专栏将结合该论文,对于LPBF 多材料增材制造发展概况以及界面特征和强化方法进行解读。

Article_LPBF原文链接:https://doi.org/10.1080/17452759.2022.2028343

block 多材料LPBF增材制造发展概况

多材料零件由零件内物理分布的多种材料组成,可以集成各种材料的结构和功能,以在零件的预定位置实现可定制的性能(局部耐磨性、高导热性、隔热性、耐化学腐蚀性等)。

多个材料在一个零件中的特定分布可以实现比单个材料零件更好的性能。特别是,一些产品在需要多功能和多环境适应性的恶劣工作条件下使用。例如,IN718/316L多材料结构可以实现高耐热性和高温抗氧化性,以及足够的低温机械强度和韧性,因此在航空航天领域具有巨大潜力;NiTi/Ti6Al4V多材料结构可能适用于生物医学骨科植入物,具有个性化、与人体骨骼相当的刚度以及优异的耐磨性和耐腐蚀性。因此,多材料结构可以为采用创新结构和多材料布局的最终用途零件整体制造铺平道路,并满足航空航天、生物医学、汽车和模具行业日益增长的需求。

使用传统的制造技术,如粉末冶金、轧制、焊接、化学气相沉积和扩散连接,很难制造具有复杂几何形状和不同材料类型或成分可控分布的多材料结构。增材制造(AM)可以基于逐层原理提供高设计自由度和制造复杂零件的灵活性,能够精确控制材料的空间分布,因此在多材料结构的设计和制造中具有很大的潜力。与传统制造技术相比,增材制造-3D打印技术为几何形状复杂的多材料零件制造提供了一种更加可靠的方法,降低了制造成本。特别是,这一过程引入了更高层次的设计自由,能够控制复杂的三维空间内材料分布的方向性和多样性。因此,多材料增材制造可以实现“在正确的位置打印正确的材料”和“为独特的功能打印独特的结构”。

金属多材料结构的典型AM技术是激光粉末床熔融(LPBF)和激光定向能量沉积(L-DED)。

LPBF是AM家族的关键成员,它使用高能强度激光束在粉末床上选择性熔化金属粉末。与L-DED工艺相比,LPBF工艺由于其较小的激光光斑和较薄的层厚度,可以制造具有更复杂和更精细结构的多材料结构。该工艺已越来越多地应用于制造尺寸误差小于100μm的复杂多材料结构,在热交换器、电气设备、HIP植入物、珠宝、燃烧室、耐磨部件、刀具等制造方面显示出巨大潜力。

LPBF 增材制造多材料结构的机械性能(拉伸强度、弯曲强度等)取决于界面结合,界面结合由界面处的微观结构和缺陷决定。孔隙和裂纹等缺陷会削弱多材料结构的结合强度,而界面处细化的微观结构会增强界面结合。

LPBF的多材料结构主要由离散多材料复合材料制成。然而,使用复合材料在多材料零件内的预定位置控制不同成分的变化具有挑战性。在离散多材料的打印策略上已经进行了大量的努力。目前,使用LPBF打印多材料结构有三种主要策略:(i)LPBF过程直接在基板上进行,多材料部分由基板和打印层组成;(ii)通过在单个打印过程中手动更换另一种粉末来打印多材料零件;以及(iii)可以修改LPBF机器的粉末供给系统以打印多材料零件。特别是,第三种策略最有希望通过编程实现在一个可打印层内和不同层之间精确打印不同材料。

图1显示了多材料结构的LPBF增材制造概况,包括其配置、材料类型和关键技术问题。根据不同材料的分布,LPBF打印多材料结构可分为层间和层内打印结构。典型的多种材料类型有金属/金属、金属/陶瓷、金属/玻璃和金属/聚合物。对于这些多种材料类型,实现无孔隙和无裂纹的界面并实现强结合是最关键的。多材料LPBF工艺中的关键技术问题包括粉末输送系统的开发、打印前多材料结构的数据准备、热力学计算和工艺模拟以及粉末交叉污染和回收。

Article_LPBF_1图1 多材料结构的LPBF制造概述,涉及其配置、材料类型和关键技术问题。

鉴于在多材料LPBF中日益重要的作用,对于界面微观结构和缺陷的形成机理以及界面结合的强化方法仍然缺乏讨论。此外,需要全面解决多材料LPBF及其潜在应用中的技术挑战(包括设备、数据、工艺、材料)。

block 界面特征和强化方法

l LPBF的多材料类型

最近,大量研究证明了LPBF工艺用于多材料结构的可行性。在这些多材料类型中,金属/金属多材料结构在LPBF打印中最受欢迎。用于多材料LPBF的金属粉末材料包括铁基合金、钛合金、铝合金、铜合金、镍基合金等。316L不锈钢(SS)和Ti6Al4 V广泛用于LPBF打印金属/金属多材料结构。

对于金属/陶瓷多材料结构,陶瓷材料通常用于提高金属材料的硬度和耐磨性,陶瓷的绝缘性能可用于制造金属/陶瓷集成电路和传感器。然而,由于使用粉末床AM技术制造金属/陶瓷多材料结构具有不同的原子键、热膨胀系数和金属与陶瓷之间的较差润湿性,因此LPBF 工艺制造金属/陶瓷多材料结构很有挑战性,金属/玻璃和金属/聚合物多材料结构的打印也面临同样的挑战。

Article_LPBF_2图2 通过LPBF进行层间打印的金属/金属多材料结构:(a)AlSi10Mg/C18400,(b)316L/C1840,(c)316/CuSn10/18Ni300/CoCrMo,和(d)316L/CuSn10。BD是指构建方向。

目前,大多数研究报告了具有层间打印的多材料结构(图2)。这些多材料结构的特点是材料分布在构建方向上的变化。在层间LPBF打印多材料结构中,界面的形成及其特性仍然是有待研究的重点。Sing等人(2015年)在al/Cu层压板的界面处获得了良好的冶金结合(图2(a)),并在界面处发现了金属间化合物Al2Cu。Liu等人(2014年)通过LPBF生产了316L/C18400多材料样品(图2(b)),并在316L/C1 8400界面观察到大量铁和铜元素扩散。316L/CuSn10/18Ni300/CoCrMo多材料结构是用LPBF制造的(图2(c)),其沿着构造方向表现出高度自由的材料分布。具体而言,通过在界面层中采用岛扫描和层间交错扫描策略,实现了具有良好接头强度的316L/CuSn10双金属结构(图2(d))。在该研究中,316L和CuSn10之间获得了良好的结合界面,熔合区宽度为∼550 μm。316L/CuSn10界面的微观结构表明,CuSn10区域存在球形富铁颗粒,一些较细的富铜颗粒嵌入球形富铁粒子中。在界面处观察到晶粒跨越熔体池边界的外延生长。LPBF打印316L/CuSn10多材料结构的极限强度为423.3 MPa , 优于通过常规工艺制造的钢/铜多材料结构(150-300 MPa)。

Article_LPBF_3图3 通过LPBF进行层内打印的金属/金属多材料结构:(a)CuSn10/4340块部件,(b)CUSN110/4340齿轮部件,(c)狮身人面像的多色多材料雕像,以及(d)CuSn10/316L涡轮盘。

图3(a)和(b)显示了具有LPBF层内打印的CuSn10/4340钢多材料结构。CuSn10和4340钢粉末不仅可以在不同的层中铺粉和打印,而且可以在单层的不同区域中铺粉和打印。材料分布的尺寸误差小于0.1 mm,表明CuSn10/4340钢多材料结构的高打印精度(图3(a))。图3(b)显示了3D打印的CuSn10/4340齿轮零件,其中外轮廓(宽度为0.5 mm)和内部分别打印有CuSn10和4340钢。图3(c)显示了由CuSn10和316L不锈钢打印的雕像。图3(d)显示了由CuSn10环和316L叶片组成的涡轮盘。在叶片根部,材料逐渐从316L变为CuSn10。

Article_LPBF_4图4 由LPBF打印的金属/类金属多材料结构:(a) 1.2367钢模/ ZrO2 + Al2O3, (b) CuSn10/PA11,和(c, d) CuSn10/钠钙玻璃。

图4显示了LPBF打印的金属/陶瓷、金属/聚合物和金属/玻璃多材料结构。对于金属/陶瓷多材料结构,研究了1.2367型钢/ZrO2/Al2O3三明治状结构的可打印性。该结构包括顶部和底部的工具钢多孔结构和块体,以及中间的ZrO2 + Al2O3中间层(图4(a))。结果表明,1.2367工具钢多孔结构与ZrO2+ Al2O3中间层的粘附强度为22 MPa。对于金属/聚合物多材料结构,Chueh、Zhang等人(2020)研究了通过一种专有的多材料LPBF系统打印CuSn10/PA11杂化部件(图4(b))。结果表明,CuSn10和PA11之间保持了适当的距离,减少了CuSn10表面上的碳渣引起的“球化”。对于金属/玻璃多材料结构,Zhang等人(2020)使用专有的喷嘴基多材料LPBF系统打印了一个成分变化的功能分级材料(FGM)部件,从铜合金到钠钙玻璃,其中包括玻璃、陶瓷基复合材料(CMC)、过渡、金属基复合材料(MMC)和铜区(图4(c)和(d))。在CMC侧和MMC侧观察到一个离散界面,其间没有氧化过渡层,FGM部分从金属侧的延性逐渐过渡到玻璃侧的脆性。

l 界面微观结构

不同材料之间的界面微观结构对LPBF 3D打印多材料结构的界面力学性能有重要影响。不同的复合材料类型可以形成不同的界面微观结构。至于金属/金属多材料结构,材料表现出类似的原子键以及物理和化学性质(熔化温度、热膨胀系数、热导率、元素组成等)。因此,在存在成分梯度变化的多材料界面处通常会产生熔合区,这有助于异种材料之间的强冶金结合。

Article_LPBF_5Article_LPBF_52图5 不同多种材料类型的各种组合的界面微观结构:(a)316L/CuSn10,(b)316L/C52400,(c)300马氏体时效钢/304不锈钢,(d)316L/钠钙玻璃,(e)1.2367工具钢/ ZrO2 + Al2O3,和(f,g)CuSn10/PA11。

如图5(a)所示,在316L/CuSn10多材料结构的界面处产生了宽度为550μm的熔合区,熔合区中Fe和Cu元素的数量逐渐变化。图5(b)显示了316L/C52400多材料结构界面处具有明显暗特征的类似熔合区。图5(c)显示了LPBF打印300马氏体时效钢/304不锈钢多材料结构界面处厚度高达120μm的互扩散区域。拉伸结果表明,300马氏体时效钢与304不锈钢紧密结合,因为所有断裂均位于304不锈钢一侧,远离界面。在界面处的熔体池中可以观察到由密集的Marangoni对流引起的环形流动特征,表明在界面处发生了异种材料的强烈元素扩散。

然而,如果材料表现出显著不同的原子键,以及物理和化学性质,如金属/陶瓷、金属/聚合物和金属/玻璃,则可能在其界面处产生明显的边界,而不是熔合区(图5(d–g))。它们的结合强度主要取决于机械联锁结构。图5(e)和(f)分别显示了钢/陶瓷、铜/聚合物多材料结构的不规则界面,这可以通过机械联锁结构提高异种材料之间的粘合强度。LPBF打印件的粗糙表面通常是由于粉末粘附或不规则形状的熔体轨迹而获得的,这有助于在界面处形成机械联锁结构

Article_LPBF_6 Article_LPBF_62图6 沿构建方向的多材料结构的独特微观结构特征:(a-d)300级马氏体时效钢/T2铜和(e)316L/C52400铜。

在金属/金属多材料零件中,其独特的微观结构特征(针状凝固组织、细化晶粒等)有助于加强界面结合。Tan等人发现,由于Marangoni效应和界面处熔体池的表面张力梯度,300级马氏体时效钢/T2铜多材料结构的界面沿Z轴方向容易形成元素扩散区(图6(a)和(b))。如图6(c)所示,可以观察到由Marangoni效应引起的熔体池中的循环流动。固液界面的温度梯度G和生长速率R可以确定凝固过程中微观结构的形态和尺寸。微结构的生长方向与最大温度梯度平行。凝固后,一些针状钢颗粒渗透到铜中,在界面处充当“加强肋”,加强界面结合(图6(d))。此外,Bai等人(2020年)观察到,界面区域的晶粒小于316L/C52400铜多材料零件中每种材料的晶粒,这可能有助于界面硬化和裂纹抑制,如图6(e)所示。

l 界面缺陷

在使用异种材料通过LPBF制造多材料结构时,实现无气孔和无裂纹的界面以及强结合是最关键的。界面缺陷是多材料LPBF的关键挑战。这些缺陷包括裂纹、气孔、分层和未熔化的粉末颗粒。由于不同材料之间的热性能(热膨胀系数、热导率等)不匹配,熔合区可能出现裂纹。

Article_LPBF_7Article_LPBF_72图7 各种多材料结构中的界面缺陷:(a)316L/C18400,(b)316L/CuSn10,(c,d)316L/钠钙玻璃,(e)AlSi10Mg/C1840,(f)1.2367工具钢/ZrO2+Al2O3。

Liu等人(2014年)用LPBF制备了316L/C18400多材料结构,发现尽管钢和铜之间形成了良好的冶金结合,但在界面处产生了裂纹和孔隙(图7(a))。Chen、Yang等人(2019年)在316L/CuSn10界面发现了大量树枝状裂纹(图7(b))。由于316L的热膨胀系数低于CuSn10,LPBF中高温梯度引起的残余应力可能集中在316L侧。图7(c)和(d)显示了316L/钠钙玻璃多材料结构的热影响区(HAZ)中存在裂纹,这是由于热膨胀系数的差异造成的。

由于激光能量密度不足,可能在界面处形成孔隙。由于铜的高反射率和热导率,熔合区的铜粉无法完全熔化,从而形成孔隙。Sing等人(2015年)观察到AlSi10Mg/C18400多材料结构界面处的裂纹和孔隙,其中在铜侧产生宏观孔隙(图7(e))。更高的激光能量密度可能是消除因熔融不足而导致的孔隙的有效方法。然而,过度的激光能量密度可能导致界面上出现小孔。

由于缺乏熔合,未熔融粉末颗粒通常存在于金属/类金属多材料结构的界面处,这不利于界面结合。在金属/陶瓷、金属/玻璃和金属/聚合物多材料结构中,由于材料熔化温度和激光吸收率的巨大差异,不同材料在相同激光能量输入下具有不同的熔化行为。

Article_LPBF_8Article_LPBF_82图8 LPBF打印的CuSn10/PA11多材料零件中的界面缺陷:(a,b)未熔化的CuSn110粉末,(c)激光熔化和再熔化CuSn10/PA11粉末混合物的图示,(d)熔化的CuSn10表面上的残余聚合物颗粒,以及(e)经激光再熔化处理的CuSn100样品表面的SEM图像。

Chueh、Zhang等人(2020年)还观察到CuSn10/PA11多材料样品中未熔融的CuSn10粉末颗粒(图8(a)和(b)),并说明CuSn10和PA11之间不同的熔融温度给激光能量输入的优化带来了困难。此外,当打印Cu10Sn/PA11混合粉末时,激光扫描期间熔融CuSn10表面上残留聚合物颗粒的热裂解导致纳米级气孔(图8(c-e))。因此,过度和不足的激光能量输入可能分别导致聚合物基板的蒸发和金属不完全熔化导致的粘合强度差。

l 界面粘结强化方法

在多材料结构的界面处形成缺陷的机制可归因于热性能与材料的失配以及LPBF工艺中未优化的打印工艺参数。全面了解LPBF工艺对于控制多材料结构的质量至关重要。

微结构、残余应力和热历史受LPBF工艺参数(例如激光功率、扫描速度、图案填充空间、层厚度和扫描策略)的深刻影响。应仔细选择多材料结构界面处采用的工艺参数,否则,将会导致缺陷并削弱界面结合强度。已经努力实现抑制界面缺陷的有效方法,包括优化工艺参数、避免材料突变和界面设计

对于具有复杂结构的异种材料或成分梯度材料,不建议通过传统的多次试错实验来优化LPBF工艺参数。由于扫描策略定义为激光在LPBF过程中的空间移动模式,因此它随不同的扫描序列、扫描方向、扫描矢量长度、扫描矢量旋转角度、填充空间等而变化。由于激光在LPBF过程中的快速移动,扫描策略会影响零件内部的热流方向、热梯度和冷却速率,这对残余应力和微观结构有重大影响。因此,可以使用适当的扫描策略来优化异种材料之间界面的热流方向、热梯度和冷却速率,从而降低残余应力并实现界面处的无缺陷微观结构。

Article_LPBF_9 Article_LPBF_92图9 (a)基本扫描策略,(b)二维扫描策略,(c)层间扫描策略,(d)CuSn10/316L多材料结构,以及(e)层间交错扫描策略和岛状扫描策略示意图。

此外,通过扫描策略优化熔体池的搭接,可以显著减少界面处的孔隙。图9(a–c)展示了应用于LPBF工艺的各种扫描策略,包括基本扫描策略(如单向扫描、双向扫描和螺旋扫描)、二维扫描策略(例如平面扫描、条形扫描和岛状扫描)和层间扫描策略(比如层间交错扫描和正交扫描)。可以灵活地采用扫描策略的组合来打印具有减少的残余应力和所需微结构的多材料结构的界面。Chen、Yang等人(2019年)和Chen、Yeng等人(2020年)结合层间交错扫描策略和岛扫描策略打印316L/CuSn10多材料结构的界面(图9(d)和(e)),减少了孔的数量和残余应力的集中,从而在界面处获得了优异的结合强度。

重熔策略通常用于打印兼容性有限的异种材料的界面,这可以去除氧化膜,并在原子水平上产生清洁的固液界面。此外,它可以提供额外的能量输入以促进粉末的熔化。Koopmann、Voigt和Niendorf(2019)通过重熔在钢层和陶瓷层之间形成了锯齿状表面,从而显著提高了钢和陶瓷之间的结合强度(图5(e)),而分层在未重熔的情况下发生(图7(f))。在316L基板上沉积玻璃材料时,在316L表面的重熔中也获得了类似的观察结果。

Article_LPBF_10图10 块状MS/LPBF打印MS界面的四种熔化策略:(a)说明界面增强策略的示意图,(b)四种界面增强策略,(c)多材料样本,(d)策略一,(e)策略二,(f)策略三和(g)策略四。

重熔层的数量和重熔每层的频率会影响界面结合的可靠性。Tan、Wang等人(2021)研究了四种熔炼策略对块状300级马氏体时效钢(MS)/LPBF 3D打印MS界面微观结构的影响(图10(a)和(b))。在块状MS上的MS粉末进行增材制造期间,对第一至第三层实施了四种熔化策略(I至IV)。图10(c)显示了典型的块状MS/LPBF打印MS多材料结构及其拉伸样品。可以观察到,裂缝位于块状的MS材料一侧,远离LPBF 3D打印的MS界面。他们发现,在策略I样品中出现了大量孔隙(图10(d)),这被认为是由于反复熔融后熔体池温度极高导致的材料过度蒸发。随着重熔频率的降低,策略II和III中的孔隙数量和大小减少(图10(e)和(f)),策略IV中只能观察到少量亚微米孔隙(图10(g))。因此,对初始打印层进行适当的重熔有利于增强界面冶金结合,而过度重熔会导致孔隙缺陷

在多材料结构界面键合异种材料的方法包括直接键合法、成分转换法和中间键合层法。直接键合法直接熔化异种材料,当材料具有相似的热性能时,可形成强界面。不同材料之间的相容中间键合层可有效消除不同材料之间物理/化学性质的不相容性,从而形成坚固耐用的键合界面。此外,中间键合层方法通常用于避免在不同材料之间产生有害相。

Article_LPBF_Article_LPBF_11图11 一个LPBF打印的Ti6Al4V/Hovadur®K220铜/316L不锈钢多材料零件:(a)零件和拉伸样品示意图,(b)背散射电子图像和(c)Ti6Al2V/K220铜界面内的断裂路径图,(d)背散射电子图像和(e)K220铜/316L不锈钢界面的反极图。

钛/钢多材料结构具有钛合金的耐腐蚀性和相对低成本钢的各种性能(抗氧化性、优异的硬度、良好的可加工性等)的良好组合,有可能应用于核电、化工和航空航天工业。然而,在钢和钛之间的直接键合中可能形成有害的Fe-Ti金属间化合物。Tey等人(2020年)获得了Ti6Al4 V/Hovadur®K220铜/316L不锈钢多材料零件,使用LPBF,其中K220铜为中间键合层(图11(a))。虽然铜中间键合层可以避免在K220铜/316L不锈钢界面处生成Fe-Ti金属间化合物,但他们发现Ti6Al4界面处存在三种有害相 V/K220铜(图11(b)),即L21有序相、非晶相和Ti2Cu,会降低多材料零件的机械强度。图11(c)显示了Ti6Al4界面处的断裂路径 V/K220铜。 V/K220铜样品通过提高α′-Ti相的界面体积分数获得了较高的抗拉强度。

此外,中间层的引入还将对界面的微观结构产生影响,从而抑制缺陷的形成并提高界面结合强度。在K220铜/316L不锈钢界面中,富铜基体和不锈钢带中分别存在大量微米级不锈钢和铜球(图11(d)),这是由Cu-Fe系统中的混溶间隙造成的。图11(e)显示了K220铜/316L不锈钢界面处的不同微观结构,表明K220铜侧的晶粒比不锈钢侧的晶粒更细。

最近的研究表明,原位合成的中间层可以提高多材料结构的界面结合强度。

Article_LPBF_12图12 在LPBF打印4Cr13 SS/MS多材料混合工具中形成的原位合成中间层:(a)SS/MS多种材料结构的界面OM形态,(b)界面反极图,(c)熔体池中的Marangoni对流和接合界面处的微观结构演变的CFD模拟,(d)穿过SS/MS界面的纳米硬度分布,和(e)显示断裂位置的标准拉伸样品。

Tan、Zhang等人(2020年)提出了一种新方法,通过原位合成富铬中间层来增强4Cr13 SS/MS多材料部件的界面结合,如图12(a)所示。在SS/MS界面可以观察到两种不同的晶粒形态(LPBF打印MS中的细马氏体晶粒和块状SS中的粗等轴晶粒)(图12(b))。他们发现,Marangoni效应通过传质促进了界面处的元素迁移和相互扩散,有助于原位形成富Cr中间层,其中富Cr颗粒可作为MS结晶的“种子”,并促进马氏体时效钢晶粒的异质形核和随后的外延生长(图12(c))。此外,界面处凝固过程中溶质重新分布的偏析也有助于原位形成中间层。有趣的是,他们发现富含Cr的原位中间层可以在一定程度上缓解界面的应变,因为在界面处无法形成应变和变形。硬度和拉伸测试结果(包括制造和时效后样品)表明,原位合成的中间层可以提高界面结合强度(图12(d)和(e))。原位合成中间层的形成有利于避免在多材料结构中引入额外的相容中间层,从而缩短制造周期并避免粉末交叉污染。

对于成分过渡方法,可以创建具有成分梯度的不同材料之间的过渡区,这更通俗地称为功能分级材料(FGM)。该方法可实现多材料结构中成分、微观结构和性能的梯度变化,并可避免因材料和应力集中的显著突变而导致的缺陷形成。Demir和Prevital(2017)开发了一个多材料LPBF平台,用于不同元素的原位合金化和生产复合材料(图13),可以实现两种不同材料之间成分的逐渐变化。

Article_LPBF_13图13 多材料结构界面处的成分过渡区:(a)粉末进料系统的设计和工作原理,以及Fe/Al-12Si的多材料试样,和(b)多材料LPBF系统的示意图,该系统具有适用于多种材料的自适应粉末输送器和718/316L样本中打印的特征。

在图13(b)中,一种经过改造的粉末输送器不同的层中进行多次粉末沉积,用于在 IN718/316L 多材料结构中制造渐变过渡区。过渡区通过在10层内交替材料沉积来构建。均化热处理后,元素扩散增强,导致材料平稳过渡,元素浓度几乎呈线性变化。元素在单轨中的扩散结果显示,Marangoni对流导致了明显的凝固形态,表明熔体池中镍元素大量混合。这种方法的独特优点是不需要额外的粉末混合物。

界面设计是提高多材料结构结合强度的另一种有效方法。

Article_LPBF_14 Article_LPBF_142图14 多材料结构的特殊接头设计

图14(a)显示了为316L/CuSn10多材料结构界面设计的“手指交叉”接头结构。界面结合的增强归因于在界面处引入机械联锁结构。此外,不同材料之间接触面积的增加也促进了材料的混合,这有助于不同材料的逐渐过渡,从而减少界面处材料变化产生的缺陷。类似地,通过设计界面的波形接头结构(图14(b)),打印出具有强冶金结合的钢/铜垫片,这可以促进不同材料的元素扩散。然而,对于金属/类金属结构,由于金属和类金属之间的原子结构不同,预先创建的表面结构可能有助于通过机械联锁提高连接强度。Chueh、Wei等人(2020年)为金属/聚合物多材料结构的界面设计了三种类型的接头结构,即互锁、锚根部和树状接触(图14(c))。首先,将316L不锈钢的宏观机械联锁结构打印在316L基板上,然后用压缩压力将熔融聚合物渗透到预打印的316L不锈钢联锁结构中,以提高界面的连接强度(图14(d))。金属/聚合物界面互锁结构显示出良好的物理锚定效应组合,导致金属和聚合物之间的高结合强度(图14(e))。

总之,在LPBF打印的多材料结构中,界面特性是优先考虑的。LPBF的多种材料类型包括金属/金属、金属/聚合物、金属/玻璃和金属/陶瓷,它们表现出不同的界面形成和键合机制。目前,界面结合的有效强化方法包括界面工艺参数的优化、中间键合层和成分过渡区的引入以及界面形状和尺寸的设计。在这些方法中,成分转换法最常用于减少界面缺陷和应力集中。

下一期,谷.专栏将分享多材料LPBF 增材制造的关键技术问题和潜在应用,敬请关注。

l 谷专栏 l

欢迎高校及科研机构、企业科学家加入谷专栏,与业界分享对推动增材制造发展起关键作用的共性基础科研与应用成果,欢迎扫描下方图片二维码提交您的信息。

谷专栏


白皮书下载 l 加入3D科学谷QQ群:106477771
网站投稿 l 发送至2509957133@qq.com
欢迎转载 l 转载请注明来源3D科学谷 l 链接到3D科学谷网站原文。

分享:

你可能也喜欢...

Baidu
map